Self-exchange Reactions of Cobalt Complexes and Implications concerning Redox Reactivity of Vitamin B12

By D. PAUL **RILLEMA,** JOHN F. ENDICOTT,* and NOEL **A.** P. KANE-MAGUIRE (Department *of* Chemistry, Wayne State University, Detroit, Michigan **48202)**

Summary The self-exchange rates of $Co(N_4)(OH_2)_2^{3+,2+}$ complexes, where (N_4) is a tetradentate macrocyclic ligand, have been found to vary by a factor of 10^{10} ; the large reactivity range cannot be related to "spin effects", but is likely a reflection of ligand reorganizational barriers; the vitamin $B_{12a} - B_{12r}$ couple is at the high end of this range-a feature which has significance in the redox mechanisms of B_{12} and related systems.

WE have extended our studies of the oxidation-reduction behaviour of complexes containing macrocyclic tetradentate ligands¹⁻⁴ to include determinations of the self-exchange rates between $Co(N_4)(OH_2)_2^{3+}$ and $Co(N_4)(OH_2)_2^{2+}$ complexes; $N_4 = 2,3,9,10$ -tetramethyl-1,4,8,11-tetra-azacyclo**tetradeca-lJ3,8,10-tetraene** (tmtat) and 5,7,7,12,14,14-hexa**methyl-1,4,8,11-tetra-azacyclotetradeca-4,11-diene (hmtad).** In the case of the *trans*-Co(hmtad)(OH₂₎₂^{3+,2+} couples we

have used cobalt-60 labelled trans-Co(hmtad) $(OH_2)_2^{\mathbf{3}+}$ and determined the rate at which the label appeared in Co- $(hmtad)^{2+}$. Reactions were run at 1.0^M ionic strength (NaClO,), *70°,* pH **1,** and were quenched by cooling to room temperature; reaction products were separated under nitrogen using Dowex 50WX12 cation exchange resin.

The $(hmtad) \cosh(t)$ species in solution appear to be nearlv four-co-ordinate with little evidence for interaction

Co(hmtad)²⁺ are insensitive to the counter ions (λ_{max}) 420 nm, ϵ_{max} 120) and are qualitatively similar (i.e., same peak maxima) as the transmittance spectra of solid low spin $(\mu = 2.31 \text{ B.M. at } 25^{\circ})$ Co(hmtad)(ClO₄)₂. Further, dilute $(1 \times 10^{-3}$ M) solutions containing (hmtad)cobalt(II)

have typical, intense, low-spin cobalt(II) e.s.r. spectra. Owing to the magnitude of the self-exchange rate constant for the Co(tmtat)($OH₂$)₂^{3+,2+} couple, to the great reactivity of these complexes [in concentrated solution Co(tmtat) with axial ligands.^{4,5} In fact, solution spectra of all $(OH_2)_2^{3+}$ oxidizes water at temperatures above 70°], and to the fact that the methyl group 1H n.m.r. resonance is a triplet *(J* **2.6** Hz, at **60';** apparently due to homoallylic coupling to methylene groups), we had to use a **lH** n.m.r. method using methyl deuteriated $Co(tmtat)(OH₂)₂³⁺$ to determine this self-exchange rate. **A** sample of [Co(tmtat)- $(OH₂)₂$](ClO₄)₃² was equilibrated with D₂O at pD 8 for 12 h, then recrystallized. Solutions of Co($[^2H_{12}]$ -tmtat)(OD₂)₂³⁺-(pD 1-2) were mixed anaerobically with $\text{Co}(\text{tmtat}) (\text{OD}_2)_2^2$ ⁺ (solutions from the perchlorate salt) in the sample tube and the growth of the methyl resonance was observed at timed intervals. Our results are summarized in the Table.

of vitamin B_{12} and it would seem that the metal-corrin ligand bonds in the B_{12} complexes should also give rise to rapidly self-exchanging species.' **We** have therefore examined the $B_{128}-B_{127}$ self-exchange using a straightforward line broadening technique. Aquo-cobalamin was prepared from hydroxy-cobalamin obtained from Sigma Chemicals, St. Louis, Missouri, and reduced to B_{12r} catalytically with $H₂$ over PtO. Line widths were measured at several B_{12r} concentrations and the self-exchange rate was calculated $(see Table).†$

It appears that the $B_{128}-B_{127}$ self-exchange rate is the fastest yet reported for a cobalt(m)-cobalt(II) couple. This intrinsic redox reactivity has significance in the chemistry

The observed difference in self-exchange rates for $Co(hmtad) (OH₂)₂^{3+,2+}$ and $Co(tmtat) (OH₂)^{3+,2+}$ couples

Summary of self-exchange rates observed for trans-Co^{III,II}(N₄) X_a *couples*

Exchanging couple	$h. M^{-1} S^{-1}$	T°	Ionic strength	pН	Method
$Co(hmtad)(OH2)23+,2+$	2×10^{-7}	70	1.0		${}^{60}Co^8$
$Co(tmtat)(OH2)23+·2+$	0.9 10^{2+1}	35 25	0.1 _p 1e	2	$([^2H_{12}]-tmtat)$
Vitamin B_{128} , B_{127}	1.5×10^3 2.5×10^3	35 35	$0.1b$.d 0.1 _{b,d}	0.4 $5-2$	H n.m.r. line broadening
	2.3×10^3 2.0×10^3	35 35	$0.1b$, d 0.1 _b	7.5	

⁴ Standard isotopic labelling. ^b Owing to problems of complex insolubility and ¹H n.m.r. sensitivity no inert electrolyte could be added. ^e Extrapolated to unit ionic strength. This rate was estimated from the Co(

amounts to more than 14 kcal mol⁻¹ in free energy of activation. This difference in intrinsic redox reactivity clearly cannot be attributed to spin multiplicity restrictions such as have been invoked to account for the slow Co- $(NH_3)_6$ ^{3+,2+} self-exchange rate,⁴⁻⁶ but is qualitatively consistent with very different ligand reorganizational barriers. The equilibrated $Co^H(hmtad)$ complexes in solution involve only very weak interaction with axial ligands^{1,3} while the spectral characteristics of $Co^H(tmtat)$ solutions suggest relatively strong co-ordination of axial ligand (or ligands) . Except for a difference in charge the tmtat ligand is

similar to dimethylglyoximate. The dimethylglyoximate complexes **of** cobalt have been suggested as model systems of the **B12** compounds and suggested model compounds. For example, the ease of preparation of $Co^{III}(tmat)$ -alkyl complexes8 may be contrasted to the difficulty in preparing Co^{III}(hmtad)-alkyl complexes.^{2,8}

The present study suggests that such contrasts arise from the kinetic instability of Co^{II}(tmtat), B₁₂r, etc., to oxidation rather than to an unusually great ligand field strength of the equatorial (N_4) ligands⁹ or to the ability of some other factor to stabilize Co^{III-}alkyl bonds.¹⁰

Partial support of this research by the U.S. Public Health Service is acknowledged.

(Received, 6th January **1972;** *Corn.* 014.)

 $\frac{1}{K}k_{\text{exch}} = 1/[\text{Co}^{II}][1/T(2\text{Co}^{III}, \text{Co}^{II}) - 1/T(2\text{Co}^{III})]$ from H. M. McConnell and S. B. Berger, *J. Chem. Phys.*, 1958, 27, 230. The effects of collisional line broadening were determined to **be** relatively insignificant since the methyl resonance **of** N(CH,),+ was found to be broadened less than 0.02 Hz in the presence of $0.025M-B_{12}$. The B_{12} resonances were broadened up to 10 Hz depending on the concentration of B₁₂.

-
- 1M. P. Litepto and J. F. Endicott, *Inorg. Chem.,* 1971, **10,** 1420. **2** D. P. Rillema, J. F. Endicott, and E. Papaconstantinou, *Inorg. Chem.,* 1971, **10,** 1739.
-
- **³**D. P. Rillema, J. F. Endicott, and R. C. Patel, *J. Amer. Chem. SOL,* 1972, **94,** 394. 4 L. E. Orgel, Reports of the 10th Solvay Conference on Chemistry, Brussels, 1956, p. 329.
- N. S. Biradar and D. R. Stranks, *Trans. Faraday SOL,* 1963, *58,* 2421. H. C. Stynes and J. A. Ibers, *Inorg. Chem.,* 1971, **10,** 2304.
-

⁷For recent reviews see: (a) T. C. Statman, *Science,* 1971, **171,** 859; (b) **H.** A. 0. Hill, J. M. Pratt, and R. J. P. Williams, *Chem. in Britain,* 1969, *5,* 156; (c) **G.** N. Schrauzer, *Accounts Chem. Res.,* 1958, **1,** 71; (d) G. N. Schrauzer, *Adv. Chem.,* 1970, **100,** 1; (e) **R.** H. Abeles, *ibid.,* p. 346.

* D. **H.** Busch, K. Farmery, V. Katovic, C. R. Sperati, V. Goedken, A. C. Melnyk, and N. Tokel, *Adv. Chem.,* 1970, *100,* 44.

^aFor example, see p. 75 in ref. *8.* **lo** For example, see p. 98 in ref. 7c.