Isocyanate Intermediates in *Elcb* **Mechanism of Carbarnate Hydrolysis**

By **A.** F. **HEGARTY*** and L. N. **FROST**

(Chemistry Department, University College, Cork, Ireland)

Summary Both the use of external and internal traps and the substituent effects support the formation of **an** isocyanate intermediate in carbamate hydrolysis.

THE mechanisms of both hydrolytic cleavage and nucleophilic attack on simple N-monosubstituted carbamates **(R1NHC0,R2, 1)** have been controversial, direct attack *(B,,2)* and prior elimination followed by addition of the nucleophile being suggested.¹ The presence or absence of an isocyanate intermediate $(R^1-N=C=0)$ is the feature which distinguishes these mechanisms.

As part of a study of amino-group reactions with deactivated acyl systems, we have examined the role of the amino-group in the carbamate **(2).** In this case the nucleophile and the carboxy-group are close, thus facilitating (relative to the bimolecular case) direct attack by the amine.

The hydrolytic product obtained from **(2)** over a wide pH range was the cyclic urea **(3).** Unexpectedly, however, the rate of formation of the urea **(3)** was, even at low pH, firstorder in [HO-]. Thus a plot of log *kobs vs.* pH [over the

pH range 5-8 in 4:1 water-dioxan at 25° , $\mu = 1.0$ (KCl)] is linear with unit slope. This kinetic behaviour is inconsistent with the direct involvement **of** the amino-group

as a nucleophile (Path **A,** Scheme) since in this **pH** region the amino-group is unprotonated and the carbamate is present almost entirely as the neutral species **(2).**

Of the two mechanisms^t consistent with the observed kinetic data, Path B, (Scheme) which involves the intermediate formation of a reactive isocyanate **(5)** is favoured. Direct S_N^2 displacement of $p\text{-}NO_2C_6H_4O^-$ by HO⁻ (or *via* a tetrahedral intermediate) would lead to the formation of a different product, 1,2-diaminobenzene, The latter compound would be formed on ready decarboxylation of the unsubstituted carbamate, $o\text{-}NH_2\text{C}_6\text{H}_4\text{NHCO}_2\text{H}.$

The cyclisation of **(2)** to **(3)** is *ca.* eight times more rapid than the rate of hydrolysis of the p -amino-isomer $(1;$ $R^1 = p\text{-}NH_2\text{C}_6\text{H}_4$, $R^2 = p\text{-}NO_2\text{C}_6\text{H}_4$. This is not a specific effect for **(2)** since all ortho-substituted carbamates show this pattern, being more readily hydrolysed than the unsubstituted parent compound (independent **of** whether the o-substituent is electron-withdrawing or donating). Thus the pH-rate profiles for the θ -substituted carbamates $(1; R^1 = o-XC_6H_4, R^2 = p-NO_2C_6H_4)$ are similar to that for (2) with $10^3 k_{\text{obs}} (s^{-1}) = 3.98 (X = H)$, 13.8 (MeO), 31.6 (Me), **41.0** (NH,), **178** (Br) (at pH **6.6** in **4:l** dioxan-water at 25°, $\mu = 1.0$).

The isocyanate intermediate may also be effectively trapped by an external nucleophile. The presence of *p*chloroaniline at pH **7** does not cause (within experimental error) an increase in the rate of reaction of the carbamate $(1; R^1 = Ph, R^2 = p-NO_2C_6H_4)$. Yet the product isolated from the reaction was shown to be $ca. 98\%$ N-phenyl-N'- $(p$ -chlorophenyl) urea. The absence of a rate enhancement demonstrates that the reaction of the aniline did not occur with the carbamate substrate and supports the involvement a reactive isocyanate intermediate (PhNCO in this case) on the reaction pathway.

The effect of substituents in **R1** and **R*** on hydrolysis are also consistent with the elimination (Elcb) mechanism (Path *B,* Scheme), showing a close similarity to those reported for ester hydrolysis *via* keten intermediates.² Hydrolysis is very sensitive to the nature of the leaving group in the carbarates (1; $R^1 = Ph$, $R^2 = XC_6H_4$); thus the Hammett $p +3.17$ *(r* 0.989) for 6 *m*- and p-substituents (using a σ value for $X = p-NO_2$. Even allowing for the fact that k_{obs} (at a given pH) is a composite constant involving K_{a} and k_1 (Scheme) this value represents considerable acyl oxygen bond cleavage in the transition state. On the other hand, substitutents attached to nitrogen $(1; R^1 = XC_6H_4)$, $R^2 = Ph$) have a small effect, $\rho +0.64$ (*r* 0.990) for 5 substituents. Apparently a substituent in this case which increases K_{a} causes a decrease in k_{1} with little resultant effect on k_{obs} .

NN-Disubstituted carbamates (which cannot form isocyanate intermediates) are far less reactive (up to 108-fold in k_{obs} , dependent on substituents present) than their N monosubstituted analogues. Substituent effects confirm that in this case an alternative mechanism (presumably direct HO^- attack) is operative. Thus, sensitivity to the leaving group (in PhNMeCO₂C₆H₄X hydrolysis) is small $(\rho \, ca. + 1.3)$. It is interesting that a change in sensitivity to the nature of the leaving group of similar magnitude also accompanies the change in ester hydrolysis mechanism from *Elcb* to nucleophilic attack.2

(Received, 18th February **1972;** *Corn.* **260.)**

t Other possible mechanisms, **e.g.** HO- catalysis of NH, attack, **will** be dealt with in the final report.

1 See D. **A.** Woodcock, *Chem. Comm.,* **1968, 267; P.** Adams and F. A. Baron, **Chem.** *Rev.,* **1965, 65, 667,** and references therein. **2 R.** F. Pratt and T. C. Bruice, *J. Amsr. Chem. SOL,* **1970, 92, 5957;** L. **R.** Fedor and W. R. Glave, *ibid.,* **1971, 93, 985.**