A New Alloxazine Synthesis

By Fumio Yoneda*

(Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan)

and SHINOBU FUKAZAWA

(Pharmaceutical Institute, Keio University, Shinanomachi, Shinjuku-Ku, Tokyo, Japan)

Summary The treatment of 6-anilinopyrimidines with diethyl azodicarboxylate led to the formation of the corresponding alloxazines in a single step.

DIETHYL AZODICARBOXYLATE (DAD) has recently been shown to be a useful reagent as the origin for N-5 in the synthesis of pteridines.¹ We now report a new convenient synthesis of alloxazines, in which DAD is also effective as a nitrogen source for the direct cyclization of 6-anilinopyrimidines.

Fusion of 6-anilino-1,3-dimethyluracil (I) with a slight excess of DAD at 160 °C for 1 h, followed by dilution with ether, led to the formation of 1,3-dimethylalloxazine² (XI) in quantitative yield. This reaction is equally applicable to other 6-anilinopyrimidine derivatives to give excellent yields of the corresponding alloxazines (see Table).[†]

Alloxaxine formation by reaction of 6-anilinopyrimidine and DAD

6-Anilinopyrimidine	Reaction conditions (°C, min)	Product	M.p. (°C)	Recrystn. solvent	Yield (%)
(I)	160, 60	(XI)	245	Benzene	95
(ÌÌ)	170, 30	(XII)	268	Benzene	87
(III)	200, 20	(XIII)	300	Benzene	70
ÌVÍ	200, 20	(XIV)	>300	Benzene	85
(V)	160, 30	(XV)	252	Benzene	98
(VI)	160, 30	(XVI)	254	Benzene	92
(VII)	160, 20	(XVII)	>300	Ethanol	96
(VIII)	180, 40	(XVIII)	> 320	\mathbf{DMF}	95
(IX)	200, 50	(XIX)	> 320	\mathbf{DMF}	83
(X)	180, 50	(XX)	> 320	\mathbf{DMF}	70

The cyclization of 1,3-dimethyl-6-(3-toluidino)uracil (V) by this method gave exclusively 1,3,8-trimethylalloxazine (XV), whereas the nitrosative cyclization³ of (V) with

sodium nitrite in acid gave a mixture of 1,3,8-trimethylalloxazine 5-oxide and 1,3,6-trimethylalloxazine 5-oxide (82:18). This behaviour can be ascribed to steric hindrance

† Satisfactory analytical and spectral data were obtained for all the products.

of the bulky 1,2-diethoxycarbonylhydrazino-group at C-5 of the possible intermediate (XXI). Similarly, treatment of 1,3-dimethyl-6-(3,4-xylidino)uracil (VI) with DAD gave 1,3,7,8-tetramethylalloxazine (XVI) as the sole product, whereas the product by nitrosation of (VI) was contaminated with 1,3,6,7-tetramethylalloxazine.

Fusion of 6-amino-4-anilino-2-methylpyrimidine (VII) with DAD gave the deaminated product, 2-methyl-2-deoxyalloxazine (4-hydroxy-2-methylbenzo[g]pteridine) (XVII), which was identical in all respects with an authentic sample prepared by the dehydrogenation of 4-hydroxy-2-methylcyclohexa[g]pteridine with sulphur.⁴ Treatment of 6anilino-4-hydroxy-2-phenylpyrimidine (VIII) and its analogues (IX and X) with DAD gave the corresponding 2-phenyl-2-deoxyalloxazines⁵ (XVIII, XIX, and XX) (Table).

(Received, 3rd February 1972; Com. 157.)

- ¹ F. Yoneda, S. Fukazawa, and S. Nishigaki, *Chem. Comm.*, 1971, 83. ² E. C. Taylor, F. Sowinski, T. Yee, and F. Yoneda, *J. Amer. Chem. Soc.*, 1967, 89, 3369.
- ³ F. Yoneda and M. Ichiba, unpublished results.
- 4 S. Nishigaki, S. Fukazawa, K. Ogiwara, and F. Yoneda, Chem. and Pharm. Bull. (Japan), 1971, 19, 206.
- ⁵ F. Yoneda, M. Ichiba, K. Ogiwara, and S. Nishigaki, Chem. Comm., 1971, 23.