607

Preparation of $XeOF_3^+ Sb_2F_{11}^-$ and $XeO_2F^+ Sb_2F_{11}^-$. ¹⁹F Nuclear Magnetic Resonance and Raman Spectra of $XeOF_3^+$ and XeO_2F^+

By R. J. GILLESPIE,* B. LANDA, and G. J. SCHROBILGEN (Department of Chemistry, McMaster University, Hamilton, Canada)

Summary The ¹⁹F n.m.r. spectra of solutions in SbF₅ and the Raman spectra of the solids show that the compounds $XeOF_4$ ·2SbF₅ and XeO_2F_2 ·2SbF₅ have the ionic structures $XeOF_3$ +·Sb₂F₁₁⁻ and XeO_2F +·Sb₂F₁₁⁻, that the $XeOF_3$ + ion has the expected trigonal bipyramidal AX_4E type structure and that the XeO_2F + ion has a pyramidal structure analagous to the isoelectronic XeO_3 .

XENON OXIDE tetrafluoride is known to form the adduct $XeOF_4:2SbF_5$ which is a non-volatile white solid melting at *ca.* 70°.¹ The structure of this adduct has not been investigated although it seemed reasonable to suppose that it

might be the ionic compound $XeOF_3^+Sb_2F_{11}^-$. $XeOF_4$ was prepared by the reaction of equimolar amounts of $XeOF_6$ and H_2O in solution in HF. The solution of XeF_4 in HF

was added to an excess of SbF₅. The solvent and excess SbF₅ were then removed under vacuum and the solid product pumped to constant weight at room temperature. The weight of the product and the elemental analyses were in excellent agreement with the expected composition XeOF₄·2SbF₅. The adduct was sparingly soluble in SbF₅

occupy the axial positions. The structure is thus very similar to that of the isoelectronic IOF_3 molecule. The n.m.r. parameters are given in Table 1.

The Raman spectrum of the solid adduct $XeOF_4 \cdot 2SbF_5$ is also consistent with the formulation $XeOF_3 \cdot \cdot Sb_3F_{11}^-$ since, in addition to the bands expected for the $Sb_2F_{11}^-$ ion, we

TABLE 119F N.m.r. parameters for the fluoro- and oxyfluoro-cations of Xe^{vI} in SbF5 solvent

Cation	Chemical shift ^a (p.p.m.)	$J_{\mathbf{FF}}$ (Hz)	J ¹²⁹ Xe ^{−19} F (Hz)	Temp. (°C)	Molal conc. of cation
XeF5 ^{+b}	$\begin{cases} A-231.7 \\ X 108.8 \end{cases}$	175.7	1512	35	$(XeF_{\delta}^{+}) = 0.251$
	(A-195)		983		
XeOF ₃ +	$\begin{cases} 111001\\ X_{2}-147\cdot 1 \end{cases}$	103.0	434	5	$(XeOF_{3}^{+}) = 0.699$ $(XeF^{+}) = 1.10$
$XeO_{2}F^{+}$	-199.4		79.7	5	c

• With respect to external CFCl₃. • Ref. 3. • Prepared by dissolving 0.354 g of XeO₂F+-XeF+Sb₂F₁- mixture in 1.75 g of SbF₃.

at 50° but the solubility was considerably enhanced by the addition of XeF_2 to the solution. A similar effect of XeF_2 on the solubility of XeF_4 in SbF_5 has been noted previously.³ The solution containing $XeOF_4$ ·2SbF₅ and XeF_2 could be supercooled to 5° long enough to obtain an n.m.r. spectrum. Both solutions gave a ¹⁹F n.m.r. spectrum consisting of an AX_2 spectrum in the F-on-Xe region with a slight second

also observed bands at 942 cm⁻¹, which may be attributed to the Xe=O stretch, and at 634, 589, and 554 cm⁻¹, which may be attributed to the Xe-F equatorial stretch and the symmetric and asymmetric stretches Xe-F axial, respectively. Comparison with the spectra of the isoelectronic IOF₃ molecule and with XeF₃⁺ and XeOF₄ also supports these assignments. The Xe-F frequencies are very close to those of XeF₃⁺ which has the very similar structure (II) with a lone pair replacing the doubly-bonded oxygen.

TABLE 2

Observed Raman frequencies and assignments for $XeOF_8^+$ and XeO_8F^+ and related species

				Frequency (cm ⁻¹)					
Vibrational mode		${ m XeOF}_{8}^+$	IOF₃ª	ŇeF ₃ +b	XeOF4°				
Xe ^I =O stretch Xe ^I -F eq. stretch	942 634	883 657	643	919					
	eum	580	550	584	566 ¹				
Xe ^I -F ax. stretch	sym.	009	000	001	530s				
	asym.	554e	515	549°					
		XeO_2F^+	IO ₂ F ⁸	$XeO_2F_2^d$					
Xe ^I =O stretch	sym.	865	807	850					
	asym.	924	866	882					
Xe ^J -F stretch	-	595	550	537					

^a Ref. 4. ^b Ref. 3. ^c Ref. 5. ^d Ref. 6. ^e Because of other peaks in this region of the spectrum this assignment must be regarded as tentative. ^f Xe-F sym. stretch. ^g Xe-F asym. stretch.

No adducts of XeO_2F_2 with SbF_5 have so far been reported. A solution of XeO_2F_2 in HF was prepared by adding water to a solution of XeF_6 in a 2:1 mol ratio. This solution was added at low temperature to an excess of SbF_5 and the mixture warmed to room temperature and pumped to constant weight. The weight of the yellow solid product corresponded to the composition XeO_2F_2 , 1.8SbF₅. The solid dissolved readily in SbF_5 at room temperature to give a yellow-green solution which slowly evolved a gas

FIGURE. ¹⁹F N.m.r. spectrum (5°, 56·4 MHz) of the XeOF₃+ cation in a solution having the molal composition (XeOF₃+) 0·699, (XeF⁺) 1·10. (A) equatorial fluorine and (a) ¹²⁹Xe satellites; (X) axial fluorines and (x) ¹²⁹Xe satellites.

order perturbation and accompanying ¹²⁹Xe satellites (Figure). The spectrum is consistent with the expected structure for the $XeOF_3^+$ cation (I) in which the lone-pair, an oxygen atom and a fluorine atom occupy the equatorial positions of a trigonal bipyramid and two fluorine atoms

J.C.S. CHEM. COMM., 1972

which appeared to be oxygen. Cooling to 5° caused the gas evolution to cease and caused the colour of the solution to intensify to a dark green. The ¹⁹F n.m.r. spectrum of the solution consisted of a very broad and intense line due to F-on-Sb, a strong XeF⁺ line with accompanying ¹²⁹Xe satellites and an intense new single line with a small Xe-F coupling which is assigned to XeO₂F⁺. The Xe-F coupling in XeO₂F⁺ is the smallest that has been observed up to the present time. The n.m.r. parameters are summarised in Table 1. The chemical shifts of the Xe^{vI} fluorocations are to much lower field than the Xe^{IV} and Xe^{II} fluorocations and the Xe-F coupling constant is also much smaller and of opposite sign. These n.m.r. parameters will be discussed in detail in a forthcoming publication. The evolution of oxygen gas is presumably due to the decomposition

$$\overset{\mathrm{SbF}_5}{\mathrm{XeO}_2\mathrm{F}^+ \longrightarrow \mathrm{XeF}^+ + \mathrm{O}_2}$$

The presence of XeF+ in solution as a consequence of this decomposition is probably responsible for the apparently large solubility of XeO₂F⁺·Sb₂F₁₁⁻ in SbF₅.

The Raman spectrum of the yellow solid showed, in addition to the lines due to Sb_2F_{11} , a single Xe-F stretch at 595 cm⁻¹ and two frequencies in the Xe-O region at 865 cm⁻¹ and 924 cm⁻¹ which may be assigned to the symmetric and asymmetric stretches of the XeO₂ group (Table 2). The n.m.r. and Raman spectra are consistent with the expected trigonal pyramidal geometry for the XeO₂F⁺ ion (III).

(Received, 20th March 1972; Com. 454.)

¹ H. Selig, Inorg. Chem., 1966, 5, 183.

² R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Chem. Comm., 1971, 1543.

 R. J. Gillespie and G. J. Schrobigen, unpublished work.
 ⁴ R. J. Gillespie and G. J. Schrobigen, unpublished work.
 ⁴ H. A. Carter and F. Aubke, *Inorg. Chem.*, 1971, 10, 2296.
 ⁵ H. H. Claassen, C. L. Chernick, and J. G. Malm in "Noble-Gas Compounds", ed. H. H. Hyman, University of Chicago Press, Chicago, 1963, pp. 287-294.

⁶ H. H. Claassen, E. L. Gasner, H. Kim, and J. L. Huston, J. Chem. Phys., 1968, 49, 253.