Stereocontrolled Synthesis of a Prostanoid Synthon by Oxidative Cleavage of Substituted Norbornene Derivatives

By GERAINT JONES,* R. **A. RAPHAEL,** and **S. WRIGHT**

(Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield **SKlO** 4TG, *and Department* of *Chemistry, University of Glasgow, Glasgow* **G12** 8QQ)

Summary Novel cyclopentanoid precursors (\pm) -2 α -cyanomethyl- $l\alpha$, 4α -diacetoxy -3 β -methoxymethylcyclopentane **(21)** and (\pm) -2 α -cyanomethyl-1 α , 4 α -diacetoxy-3 β -trityloxymethylcyclopentane *(25)* for the prostanoids have been prepared by oxidative cleavage of substituted norbornene diethers **[(4)** and (6)], and their utility demonstrated by conversion into the known prostaglandin intermediates **(27)** and **(28).**

THE high and widespread biological activity of the prostanoidsl has encouraged the development of synthetic methods² for the preparation of these natural hormones. We report the synthesis of a key cyclopentanoid precursor, 2α -cyanomethyl-l α ,4 α -diacetoxy-3 β -methoxymethylcyclopentane **(21)** based on the oxidative cleavage of an unsymmetrically substituted norbornene derivative **(4).** During this investigation an intramolecular rearrangement of an acetate group3 within a cis-1,3-diol system was encountered which offered a means of differentiating, at a late stage in the synthesis, between the primary alcoholic functions on the α and β faces of the cyclopentane ring; it was thus possibIe to use the readily accessibIe symmetrically protected norbornene diether (6) as the starting material for the second part of this investigation.

5a - Carboxymethyl - *6p* - **dimethoxymethylbicyclo[2,2,1]** - hept-2-ene **(1)** was obtained from cyclopentadiene and β -formylacrylic acid pseudo ester.⁴ Reduction (LiAlH₄) of (1) gave the *endo*-alcohol (2) (61%) in an isomerically homogeneous form. Benzylation ($PhCH₂Br$, NaH) of the alcohol

(2) gave the benzyl ether **(3)** b.p. $155-158^{\circ}/0.05$ mm (98%) . Hydrolysis (40% aqueous dioxan, H₂SO₄) of (3), followed by reduction (LiAlH₄) and methylation (CH₃I, NaH) gave after distillation **(4)** b.p. 112-116"/0~05 mm **[83%** from **(3)].** This diether **(4)** is suitably protected for oxidative cleavage which provides the 9,ll (prostaglandin numbering) cis-diol system of the prostanoids.

The norbornene benzyl methyl ether **(4)** could be oxidised on a small scale $($0.1M$)$ using a molar amount of sodium periodate and a catalytic amount **of** osmium tetroxide in aqueous dioxan. However, reductive ozonolysis⁵ was more convenient in the larger scale experiments. The crude dialdehyde oxidation product *(7)* was treated with an excess of methyl-lithium in ether and gave a mixture of diols **(8),** which was directly oxidised (CrO₃) to the diketone (9) [b.p. $175-180^{\circ}/0.1$ mm, $M+318$, τ (CDCl₃) 7.83 (s) and 7.87 (s) $-COCH₃$. Baeyer-Villiger oxidation of this ketone gave the diacetate **(10)** $[r \text{ (CDCl}_3) 8.02 \text{ (s)} \text{ and } 8.08 \text{ (s)} - \text{OCOCH}_3]$ $[28\%$ overall from $(4)]$.

The benzyl group was removed from the diester **(10)** (5yoPd-C, EtOH) **(9776)** under rigorously controlled neutral conditions. The presence of acid or base catalysed the easy rearrangement of the secondary acetate **(15)** to the primary acetate **(18)** and an equilibrium mixture (40:60 by n.m.r.) was obtained. Tosylation of the primary alcohol **(15)** followed by displacement of the tosyl group (NaCN) gave the nitrile **(21)** $[M + 1\ 270.1363, v \text{ (heat)}\ 2250 \text{ cm}^{-1};$ τ (CDCl₃) 7.94 (s) and 8.02 (s), *OCOCH*₃] [25% overall from **(l0)J** ; this comparatively low conversion efficiency is largely

accounted for by the slow competitive rearrangement of the acetate group of **(15)** into **(18)** during the tosylation stage.

The acetate rearrangement was used to advantage in the following alternative synthesis of (25) . $5\alpha, 6\beta$ -Bis(benzyloxymethyl) bicyclo [2,2,1] hept-2-ene (6) [b.p. 148-150°/ 0.25 mm] **(99%)** was prepared by the direct benzylation of the known diol(5). The dibenzyl ether **(6)** was conveniently cleaved by reductive ozonolysis to the dialdehyde **(11) [v** (neat) 2720 and 1725 cm-l]. The crude dialdehyde **(11)** was treated immediately with an excess of methyl-lithium (from methyl bromide) in ether to yield the diol mixture **(12),** which was oxidised (CrO,) to the diketone **(13)**

 \overline{a}

(1) $R^1 = CO_2Me$, $R^2 = CH(OMe)_2$

(2) $R^1 = CH_2OH$, $R^2 = CH(OMe)_2$

(3) $R^1 = CH_2OCH_2Ph$, $R^2 = CH(OMe)_2$
 $R^2 = (4) R^1 = CH_2OCH_2Ph$, $R^2 = CH_2OMe$ **(3) R1=CH20CH2Ph, R2=CH(OMe)2 (5)** $R^1 = R^2 = CH_2OH$ **(6) R'** = **R2** = **CH20CH2 Ph**

(7) R1=CH20CH2Ph, R2=CH20Me,R3=CH0 (**6) R1** = **CH20CH2 Ph** , **R2= C H20M e** , **R3= C H(0H)Me (9) R1 =CH20CH2Ph, R2 =C H20Me, R3= Ac** (10) R^1 =CH₂OCH₂Ph, R^2 =CH₂OMe R^3 =OAC **R2 (11) R1=R2=CH20CH2Ph** , **R3=CH0** *i3* **(12) R'=R2=CH,0CH2Ph,R3=CH(OH)Me (13)** $R^1 = R^2 = CH_2OCH_2Ph$, $R^3 = Ac$ *'14)* **R1= R2= CH20CH2Ph,R3=OAc** R^3
 $(7) F$
 $(8) F$
 $(9) F$
 $(10) F$
 $(11) F$
 $(12) F$

 $\lceil \tau \cdot (CDCl_3) \rceil$ 7.90 (s) (6H), $-COCH_3$. Baeyer-Villiger oxidation of the diketone gave the diacetate (14) $\lceil \tau \rceil$ (CDCl₃) **8.05** (s) and 8.09 (s) -0COCHJ [19% overall from *(6)].*

The benzyl groups were removed from **(14) (6%** Pd-C, EtOH) and **(16)** isomerised by refluxing in pyridine. The

equilibrium mixture thus obtained in **90%** overall yield, consisting of the primary acetate **(19)** (60%) and the secondary acetate (16) (40%) (n.m.r.), was treated with Ph₃CCl

to give the bistrityloxy-derivative (17)^Im.p. 172-174°, and the diacetate (20) m.p. $52-54^{\circ}$ $\lceil \tau \text{ (CDCl}_3) \, 8.06 \, \text{(s)} \, \text{(6H)} \rceil$ $OCOCH₃$ [44% from (25)].

Deacetylation (K_2CO_3) of **(20)** gave the triol **(22)** which was tosylated on the primary alcoholic function. The oily monotosylate **(23)** was acetylated and the tosyl group displaced (NaCN), yielding the key prostanoid intermediate (25) $[\nu \text{ (neat)} 2250 \text{ cm}^{-1}, \text{ n.m.r. } \tau \text{ (CDCl}_3) 7.95 \text{ (s)}]$ and 8.04 (s) $-OCOCH_a$.

The utility of these nitrile intermediates $[21]$ and (25)] as prostaglandin synthons was demonstrated by their respective conversion into the lactone acetate **(27)'** and the lactone diol **(28)*** whose transformation to natural prostaglandins have previously been described. Alkaline hydrolysis $(K_2CO_3, \text{MeOH}, 25^\circ)$ of the ester functions in (21), followed by acid (conc. HC1, 100") hydrolysis of the nitrile group gave directly the hydroxy-lactone **(26) (98%) [v** (neat) **1770** cm-l]. Acetylation gave the acetoxylactone **(27)** (96%). Detritylation *(80%* aqueous-HAG, 25') of the equivalent nitrile **(25)** followed by deacetylation $(K_2CO_3,$ MeOH, 25°) and acid hydrolysis (conc. HCl, 100°) of the nitrile function afforded directly the lactone diol **(28)** [60% from **(25)].** These products were identical by t.l.c., and n.m.r. and i.r. spectroscopy with the authentic materials.

(Received, 22nd *February* 1972; *Corn.* 292.)

(18) R=Me

- ¹ P. W. Ramwell and J. E. Shaw, *Recent Progr. Hormone Res.*, 1970, 26, 139.
² J. E. Pike, *Fortschr. Chem. org. Naturstoffe*, 1971, 28, 313; R. Clarkson, *Progr. Org. Chem.*, 1971, 8, in the press.
-
- 3 W. A. Bonner, J. Org. Chem., 1959, 24, 1388.
 4 V. M. Andreev and A. V. Usova, *Izvest. Akad. Nauk S.S.S.R.*, *Ser. khim.*, 1966, 1404.
 5 J. J. Pappas, W. P. Keaveney, E. Gancher, and M. Berger, *Tetrahedron L*
-
-
- ⁶ M. Hara, Y. Odaira, and S. Tsutsumi, *Tetrahedron*, 1966, 22, 95.
⁷ E. J. Corey, N. M. Weinshenker, T. K. Schaaf, and W. Huber, *J. Amer. Chem. Soc.*, 1969, 91, 5675.
⁸ E. J. Corey, H. Sherahama, H. Yamamoto, S. Te

1490.