Crystal Structures of Two Five-co-ordinated Cobalt(II) and Nickel(II) Complexes having the MN₂P₂Br Chromophore (M=Co^{II} or Ni^{II})

By A. BIANCHI, C. A. GHILARDI, C. MEALLI, and L. SACCONI*

(Istituto di Chimica Generale dell'Universitá di Firenze, Laboratorio del C.N.R., 41 via Jacopo Nardi, 50132 Firenze, Italy)

Summary X-Ray structural analysis on two five-coordinated complexes of cobalt(II) and nickel(II) having the MN₂P₂Br chromophore and the same ligands shows that axial elongation in square-pyramidal low-spin complexes is more favourable for nickel than cobalt.

NUMEROUS X-ray structural analyses on five-co-ordinated cobalt (II) and nickel(II) complexes show that many structures are strongly distorted.^{1,2} In particular, an enhanced elongation of the axial bond is often found in the low-spin square-pyramidal complexes,^{3,4} accompanied by a lowering of the metal atom towards the basal plane. Such a distortion seems to be larger and more frequent for nickel than for cobalt complexes.¹ Nevertheless no direct comparison has been made so far, because of the absence of X-ray structures of two cobalt and nickel complexes formed with the same ligands and having the same geometry.

With this in mind we have undertaken the X-ray analysis of two complexes [M(pnnp)Br]⁺, where $M = Co^{II}$ and Ni^{II} and pnnp is the open-chain tetradentate ligand PPh₂·CH₂·CH₂·N(Me)·CH₂·CH₂·N(Me)·CH₂·CH₂·PPh₂. The two complexes [Ni(pnnp)Br]Br,0·5 BuOH and [Co(pnnp)Br]-PF₆ respectively, are low-spin and their electronic spectra suggested a five-co-ordinated square-pyramidal structure *Crystal data*. For the nickel complex: $C_{32}H_{38}Br_2N_2NiP_2$ $0.5C_4H_{10}O$, M = 768.27, monoclinic a = 15.910(2), b = 1000

15·177(1), c = 17.035(3) Å, $\beta = 120^{\circ}4(1)'$, U = 3559.6 Å³, $D_{\rm m} = 1.44$, Z = 4, $D_{\rm c} = 1.43$, space group $P2_1/c$. Multiplefilm equi-inclination Weissenberg data were collected using Cu- K_{α} radiation and the intensities of 1510 reflections were measured. The structure was solved by the heavy atom method and refined by full-matrix least-squares to a final R 7.7%.

For the cobalt complex: $C_{32}H_{38}$ CoBrF₆N₂P₃, $M = 796\cdot45$, monoclinic, $a = 17\cdot073(2)$, $b = 15\cdot262(1)$, $c = 17\cdot205(2)$ Å, $\beta = 127^{\circ}1(1)'$, $U = 3579\cdot2$ Å³, $D_m = 1\cdot51$, Z = 4, $D_c = 1\cdot49$, space group $P2_1/c$. An automatic four-circle diffractometer was used to collect 1238 independent reflections of intensity $> 2\cdot5 \sigma$ (I) with Mo- K_{α} radiation. The structure was solved by direct methods and refined by full-matrix least-squares to R 10.3%. Refinement is continuing.

Both the complexes show an elongated square-pyramidal co-ordination with the four donor atoms of the ligand n the basal plane and the bromine atom in the apical position (see Figure). The nickel and the cobalt atoms are respectively 0.20 and 0.22 Å out of the mean basal plane toward the bromine atom. The co-ordination geometry for the complexes is strictly the same, the only difference being in the amount of axial distortion.

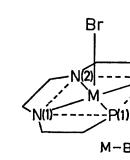
> M-Br(Å) M = Co 2.534(6) 2.807(4) M=Ni FIGURE.

The Ni-Br and Co-Br distances are 2.807(4) and 2.534(6)Å respectively, with a very significative difference of 0.27 Å.

¹L. Sacconi, Proceedings XIII I.C.C.C., Poland 1970; Pure Appl. Chem., 1971, 27, 161.

 ² P. L. Orioli, Co-ordination Chem. Rev., 1971, 6, 285.
³ E. B. Fleischer and S. W. Hawkinson, Inorg. Chem., 1968, 7, 2312; P. L. Orioli and C. A. Ghilardi, J. Chem. Soc. (A), 1970, 1511; G. A. Mair, H. M. Powell, and D. E. Henn, Proc. Chem. Soc., 1960, 415.

⁴ P. Dapporto, R. Morassi, and L. Sacconi, J. Chem. Soc. (A), 1970, 1298; A. Bianchi and C. A. Ghilardi, *ibid.*, 1971, 1096; D. W. Meek and J. A. Ibers, *Inorg. Chem.*, 1969, **8**, 1915; D. W. Allen, F. G. Mann, I. T. Millar, H. M. Powell, and D. Watkin, *Chem. Comm.*, 1969, 1004; M. J. Baker-Hawkes, Z. Dori, R. Eisenberg, and H. B. Gray, *J. Amer. Chem. Soc.*, 1968, **90**, 4253; S. Brückner, M. Calligaris, G. Nardin, and L. Randaccio, *Acta Cryst.*, 1969, **B25**, 1671; M. Calligaris, D. Minichelli, G. Nardin, and L. Randaccio, *J. Chem. Soc.* (A), 1970, 2411.


J. A. Bertrand and D. L. Plymale, Inorg. Chem., 1966, 5, 879.

Other meaningful distances are: $Co-P = 2 \cdot 22(1)$ (av.), Ni-P = 2.21(1) (av.), Co-N = 2.03(3) (av.), Ni-N = 2.00(2)(av.). The Ni-Br bond length of 2.807 Å must be compared with the values of 2.79, 2.70, 2.69, and 2.37, 2.33 Å reported respectively for the apical and basal Ni-Br distances in other low-spin square pyramidal complexes.³

As far as we know, no low-spin square pyramidal cobalt-(II) complex with a bromine as donor atom has been reported so far. Values of 2.54 and 2.33 Å for Co-Br bond distances in a distorted trigonal bipyramidal low-spin complex have been given.⁵

The larger apical distance in the nickel complex with respect to the cobalt complex can be accounted for by a simplified MO picture. The effect of elongation of the axial bond (z axis) is to decrease the antibonding character of the electrons in the molecular orbital, which is essentially d_{z^2} . As a result of this axial elongation, low-spin nickel(II) complexes, having two electrons in this orbital, gain more energy than cobalt(II) complexes, which has only one electron in the $d_{z^{s}}$ orbital.

(Received, 2nd March 1972; Com. 357.)

