Restricted P-N Rotation in Dimethylhydroxylaminohalogenophosphines

By **ANTHONY HUNG** and **JOHN** W. **GILJE***

(Department *of* Chemistry, University *of* Hawaii, Honolulu, Hawaii **96822)**

Summary Variable temperature n.m.r. spectra are consistent with hindered rotation about the P-N bond in bis- **(1,2-dimethylhydroxylamino)** halogenophosphines.

SUBSTANTIAL P-N rotational barriers, which have been detected in amino-¹ and hydrazino-phosphines,² have been attributed, in part, to p_{π} - d_{π} bonding of the nitrogen atoms' lone pair electrons,¹ and the rotational or inversional barriers, which occur in hydroxylamines, are thought to reflect interactions which also involve a nitrogen lone pair.^{3,4} **The** incorporation of P-N and N-0 bonds into a single P-N-0 unit should, thus, drastically alter the behaviour of the N-0 bond, since delocalization of nitrogen electrons into d-orbitals on phosphorus should alter the character of the nitrogen lone pair. To investigate the possible existence of such an effect we have examined the n.m.r. spectra of number of **1,2-dirnethylhydroxylaminohalogenophosphines,** and report the detection of a stereochemical exchange process, which we ascribe to slow P-N rotation.

 F_2 PNMeOMe, FP(NMeOMe)₂, Cl₂PNMeOMe, and ClP- $(NMeOMe)_2$ were prepared by literature methods,⁵ and Br_2 PNMeOMe, and $BrP(NMeOMe)_2$ were synthesized by hydroxylaminolysis of $PBr₃$ using the same procedures.⁵ Variable temperature 1H n.m.r. spectra were recorded on $CF₂Cl₂$ solutions of these compounds using a Varian HA-100 spectrometer and an n.m.r. specialities HD-60 31P spin decoupler. Chemical shifts are relative to internal Me₄Si.

At ambient temperature the ¹H spectrum of ClP(NMe-OMe)₂, taken while decoupling ³¹P, consists of single N-CH₃ $(8 \t2.92)$ and OCH₃ (3.58) resonances. On cooling, these peaks broaden and by -130° each have reappeared as two new signals each of about the same intensity (for NCH,: *Tc* -106° , Δv 22 Hz; for OCH₃: $T_c - 112^{\circ}$, Δv 9 Hz). ΔG_c^t , calculated using $k_c = \pi \Delta v \sqrt{2}$ and the Eyring equations, is 8.3 kcal mol⁻¹ as determined from both the NCH₃ and OCH₃ resonances. Without ³¹P double irradiation PNCH coupling is observed; at -130° J_{PNCH} is 23 Hz and 9 Hz coupling is observed; at -130° J_{PNCH} is 23 Hz and 9 Hz for the splitting of the high and low field N-CH₃ signals, respectively. Similarly, the single NCH, (8 **2.87)** and OCH, **(3.49)** resonances, observed in the spectrum of BrP- $(NMeOMe)_2$ while decoupling ^{31}P , broadened as temperature was decreased. By -150° N-CH₃ had reappeared as two new peaks $(T_c -127^\circ, \Delta v 25 \text{ Hz})$ with intensity ratio **⁷**: **3** of the low to high field peaks. At this temperature the OCH, signal also had resharpened but to an unsymmetric single peak, which could be simulated by a superposition of a low field, intensity **7,** signal with a high field one of intensity 3, separated by $ca. 3-4$ Hz. The NCH₃ peaks are further split if 31P double resonance is not used; however, because these still partially broadened peaks overlap, the coupling constants could not be extracted with confidence. The simple equations used above to calculate ΔG_c^{\dagger} do not apply when two conformers are unequally populated and, as a line shape analysis has not yet been completed, we

cannot report accurate values **for** the barrier in BrP(NMe-OMe)₂. However, this barrier is probably lower than that in CIP(NMeOMe)₂, since T_c for the bromo-compound occurs about **20"** below where it does in the chloro-derivative, while Δv is nearly the same between the two.

Since P inversion would be slow \dagger while N inversion should remain rapid^t in these compounds the stereochemical exchange, which is observed in these spectra, may be either P-N or 0-N rotation. A choice can be made between these since the two conformers of CIP(NMeOMe)₂ which are observed at low temperature possess quite different PNCH coupling constants. Similar behaviour has previously been noted in aminophosphines where the differences in J_{PNCH} arise from differences in the orientation **of** the N-CH, group about the P-N bond. Since slow 0-N rotation would not affect the relative conformation of nitrogen to phosphorus, P-N rotation must be the ratelimiting stereochemical process. Given thie assignment, ΔG_c^{\dagger} for P-N rotation in ClP(NMeOMe)₂ is in the range of $8-9$ kcal mol⁻¹ previously observed¹ in aminophosphines where *two* of the groups bonded to phosphorus are the same.

The low temperature spectra of the related FP(NMe-OMe)₂, F_2 PNMeOMe, Cl₂PNMeOMe, and Br₂PNMeOMe were also recorded. No changes, except slight broadening in some cases, were observed in any **of** these spectra to at least **-130'.** There may, however, be substantial barriers in these compounds and the temperature independence of their spectra may arise from accidental chemical shift equivalences since the ¹⁹F spectrum of at least F_2 PNMeOMe is temperature dependent.

We thank the Petroleum Research Fund administered by the American Chemical Society for support *of* this research.

(Received, 5th April **1972;** *Corn.* **575.)**

 \dagger Energetic arguments which demonstrate that phosphorus inversion would not be observed under the conditions used in this study have already been made.¹

 \sharp In systems in which $p_{\pi}-d_{\pi}$ bonding can stabilize a planar conformation nitrogen inversion remains rapid even at very low temperature.^{1,6,7}

¹ A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, *J. Amer. Chem. Soc.*, 1970, 92, 5306 and references therein. ² T. T. Bopp, M. D. Havlicek, and J. W. Gilje, *J. Amer. Chem. Soc.*, 1971, 93, 3051.

-
- **3 M.** Raban and G. W. J. Kenney, jun., *Tetrahedron Letters,* **1969, 1295.** J. R. Fletcher and I. 0. Sutherland, *Chem. Comm.,* **1970,** *687.*
-
- *⁵***A.** E. Goya, **M.** D. Rosario, and J. W. Gilje, *Inorg. Chem.,* **1969,** *8,* **725.**
- **6 M. Raban and F. B. Jones, J. Amer. Chem. Soc., 1971, 93, 2692 and references therein.**
⁸ M. Raban and F. B. Jones, J. Amer. Chem. Soc., 1971, 93, 2692 and references therein.
⁷ A. Rauk, L. C. Allen, and K. Mislow,
-