The Heterocyclic Bisphosphine $(CF_3PCF_2)_2$

By DAE-KI KANG and ANTON B. BURG*

(Department of Chemistry, University of Southern California, Los Angeles, California 90007)

Summary Bis(trifluoromethyl)phosphine reacts with dimethylzinc at $0-25^{\circ}$ to form the new four-membered ring compound $(CF_3PCF_2)_2$, apparently the first example of the P-C-P-C heterocycle.

THE interesting new heterocycle $(CF_3PCF_2)_2$ is formed by the reaction of dimethylzinc with bis(trifluoromethyl)phosphine [equation (1)] in sealed tubes (2.5—6 days at 0° or 3 days at

 $2(CF_{3})_{2}PH + 2ZnMe_{2} \rightarrow 2CH_{4} + 2MeZnF + (CF_{3}PCF_{2})_{2}$ (1)

25°), in yields of up to 32% of consumed (CF₃)₂PH or 38% relative to the measured methane. The proposed intermediate MeZnP(CF₃)₂ would be unstable because the P(CF₃)₂⁻ ion could act as a base to catalyse transfer of fluoride to zinc (cf. fluoride transfer in attempted preparations of perfluoroalkylzinc compounds¹). The slowness of

the present process confirms earlier indications that $(CF_3)_2$ -PH is only weakly active as a protic acid; like $(CF_3)_3$ P, it fails to form an observable complex with dimethylzinc.

The product $(CF_3PCF_2)_2$ was isolated by high-vacuum fractional condensation at -45° and purified with a small high-vacuum reflux column at -78° . Its equilibrium vapour pressure at 0° was 13.5 mmHg; M (vapour phase) 304; M^+ (mass spectrum) 300. It was analysed by heating with bromine in excess, in a sealed n.m.r. tube. The ¹⁹F n.m.r. spectra at various stages suggested the successive formation of $CF_3P(CF_2Br)_2Br_2$, $CF_3P(CF_2Br)Br_3$, and CF_3PBr_4 , meaning that bromine cleaved the P-CF₂ bonds far more rapidly than the P-CF₃ bonds. The final spectrum showed only CF_2Br_2 and CF_3Br (each measured as 2 mol. equiv.), evidence against C-C bonding. The lack of reaction with methanol precluded P-P bonding.

The ¹⁹F n.m.r. spectrum (Figure) agrees with the suggested structure. The symmetry of the outer septets indicates that the four CF₂ fluorine atoms are alike, suggesting that the CF₃ groups are in trans-positions above and below a planar ring.

FIGURE. ¹⁹F N.m.r. spectrum of $(CF_3PCF_9)_g$ at 94.1 or 56.4 MHz. δ values are measured upfield from Cl_3CF (tube-substitution). The integrated intensity of the CF_2 pattern is $\frac{2}{3}$ that of the CF_3 pattern.

The ³¹P n.m.r. spectrum is symmetrical, centred at δ 90.5 p.p.m. from H_3PO_4 , and shows more than 40 peaks.

The i.r. spectrum (vapour phase) shows the following: ν (C-F) 1182s, 1161s, 1141vs, and 1100m cm⁻¹; δ (CF_s) 746w and 555w cm⁻¹; ν (P-C) 502w, 434w, and 371w cm⁻¹. Weak peaks at 1300, 1290, 878, and 685 cm⁻¹ were not assigned. The u.v. spectrum (vapour phase) showed end-of-scale absorption at 1900 Å (ϵ 2284) and weak peaks at 2360 (ϵ 170) and 2678 (112) Å probably due to nearly forbidden transitions.

The compound (CF₃PCF₂)₂ displaced CO (2 mol. equiv.) from excess of Ni(CO)₄ suggesting that (CF₃PCF₂)₂[Ni(CO)₃]₁ was formed, analogous to 'NiPPNi'.² However, attempted distillation of the product in vacuo led only to liberation of CO and $Ni(CO)_4$. A trans-planar arrangement of the phosphorus lone-pair electrons would preclude formation of the sesquicarbonyl [e.g. $L_2Ni_2(CO)_3$];³ polymerization would be more likely. However, the ligand $(CF_3PCF_2)_2$ might have suffered change, for it could not be recovered by the action of iodine.

We thank the National Science Foundation for financial support.

(Received, 5th April 1972; Com. 552.)

¹ R. N. Haszeldine and E. G. Walaschewski, J. Chem. Soc., 1953, 3607. ² A. B. Burg and W. Mahler, J. Amer. Chem. Soc., 1958, 80, 2334.

CF2

95-3 p.p.m

- ⁸ A. B. Burg and R. A. Sinclair, J. Amer. Chem. Soc., 1966, 88, 5354; Inorg. Chem., 1968, 7, 2160.

CF3

88.2 Hz

7-5 H z