An Electron Spin Resonance Study of the Interaction of Sulphur Dioxide with Tetraphenylporphyrincobalt(II)

By B. B. WAYLAND* and D. MOHAJER

(Department of Chemistry and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pa. 19104)

Summary Sulphur dioxide interacts reversibly with tetraphenylporphyrincobalt(II) to form an adduct in which SO₂ functions as a donor, while oxygen forms a superoxide complex.

TETRAPHENYLPORPHYRINCOBALT(II) [Co(tpp)], and related low spin Co^{II} complexes can function as one electron donors or two electron acceptors.^{1,2} We report that while oxygen interacts with Co(tpp) and Co(tpp)B (B = MeCN, py) to form co-ordinated superoxide complexes, SO₂ functions as a donor toward Co(tpp) and there is no evidence for any SO₂⁻ species, or oxidation of Co^{II}.

Frozen toluene solutions of Co(tpp) with SO₂ have e.s.r. spectra that indicate formation of a near axially symmetric complex (Figure, Table). This adduct formation is found to be completely reversible. The e.s.r. spectrum of the SO₂ adduct is similar to that for free Co(tpp) except that the ⁵⁹Co coupling constants are reduced and the g values shifted. In contrast with the O₂ complex, the SO₂ adduct clearly contains Co^{II}. The g value ordereing (g_{\perp}

TABLE

E.s.r. parameters for Co(tpp) and adducts with CO, O₂, and SO₂ in frozen toluene (100 K)

			g u	A(59Co),G	g_	B(59Co),G
Co(tpp)		••	1.97	161	2.80	153
Co(tpp)SO,	••	••	$2 \cdot 025$	109	$2 \cdot 465$	66
Co(tpp)CO ⁸		••	2.017	78	$2 \cdot 217$	33
Co(tpp)MeCN ^a		••	2.028	92	2.364	23
Co(tpp)O.		ca.	2.05		1.993	31
Co(tpp)MeCN(C	D ₂)	••	2.068	13	2.003	18
^a ref. 1.						

> g_{\parallel}) for Co(tpp) and the SO₂ adduct are most consistent with a $(d_{xz}, d_{yz}, d_{xy})^6 (d_{z^3})^1$ ground configuration. Reductions in g_{\perp} and the ⁵⁹Co coupling constants for Co(tpp)SO₂ compared to the values for Co(tpp), are characteristic of donor adduct formation and primarily result from an increase in the $d_{xz,yz} \rightarrow d_{z^3}$ energy separation ($g_{\perp} = 2.00$ $-6 \lambda_{eff}/\Delta E_{xz,yz} \rightarrow z^3$).³ Both σ -donor and π -acceptor properties of SO₂ can contribute to the increased $d_{xz,yz} \rightarrow d_{z^3}$ energy separation. Comparison of the e.s.r. parameters

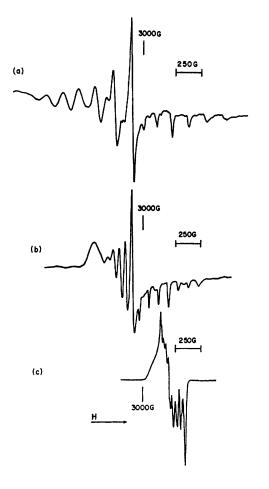


FIGURE. E.s.r. spectra for frozen toluene solutions (100 K. (v = 9.154 GHz), (a) Co(tpp), (b) Co(tpp)SO₂, (c) Co(tpp)O₂.

- ¹ B. B. Wayland and D. Mohajer, J. Amer. Chem. Soc., 1971, 93, 5295.
- ² F. A. Walker, J. Amer. Chem. Soc., 1970, 92, 4235; A. L. Crumbliss and F. Basolo, *ibid.*, 1970, 92, 55.
 ³ A. H. Maki, N. Edelstein, A. Davison, and R. H. Holm, J. Amer. Chem. Soc., 1964, 86, 4580.
 ⁴ R. N. Scott, D. F. Shriver, and L. Vaska, J. Amer. Chem. Soc., 1968, 90, 1079.
 ⁵ A. A. Vleck and F. Basolo, Inorg. Chem., 1966, 5, 156.

777

suggests that SO₂ is substantially less effective than CO, MeCN, or pyridine in these combined effects. The most important result is that there is no evidence for an SO₂species or any oxidation of Co^{II} which can be contrasted with oxygen interacting with Co(tpp)B (B = MeCN, py) to form superoxide complexes of Co^{III}.² We have also found that oxygen co-ordinates Co(tpp) even in the absence of a donor to form a superoxide complex, (Table, Figure).

Presence of a donor molecule in the fifth co-ordination site is considered to facilitate oxidative addition reactions of Co^{II} including oxygen adduct formation.² Mono base adducts of Co(tpp) with py and MeCN were studied with SO₂ in order to evaluate the influence of the co-ordinated donor on SO₂ complex formation. Addition of SO₂ to a toluene solution of Co(tpp)B (B = MeCN or py) did not result in an SO₂ complex. There is no indication of ligand displacement, six co-ordinate adduct, SO₂- species, or oxidation of Co^{II} in this system. This is in marked contrast with the oxygen system where added donor such as pyridine enhances O₂ complex formation.² This is particularly interesting, for SO₂ has a higher electron affinity and is in general a better acceptor than O_2 .⁴ The electron affinity of the ligand is clearly not the exclusive factor in determining the charge and spin distribution in the complex. Covalent bonding of oxygen to Co(tpp) must be responsible for producing an adduct resembling co-ordinated superoxide. $[Co(CN)_5]^{3-}$ is known to react with SO₂ to give a diamagnetic oxidative addition product formulated as $\{[(NC)_{5}CO]_{2}SO_{2}\}^{6-.5}$ The absence of any related oxidative addition products in the Co(tpp) or Co(tpp) donor system with SO₂ may result in part from the relatively large steric requirements of this porphyrin complex.

The authors acknowledge the support of the Advanced Research Projects Agency and the National Science Foundation.

(Received, 27th March 1972; Com. 527.)