Partial Synthesis of Gibberellin A₃₇ by Selective Reduction of the Hindered 10-Carboxy-group in Gibberellin A₁₃

By D. H. Bowen, D. M. Harrison, and J. MacMillan* (School of Chemistry, The University, Bristol BS8 1TS)

Summary Selective reduction of the severely hindered 10-carboxy-group in gibberellin A_{13} (5) has been achieved through its $20 \rightarrow 3$ -lactonic derivative (10) in which the relevant carbonyl function is made more accessible; a partial synthesis of the new gibberellin A_{37} (2) is thus provided.

The need for a partial synthesis of derivatives of gibberellin A_{15} (GA₁₅) (1) from the relatively accessible GA₁₃ (5) has been cogently argued by Cross and Stewart.¹ A further stimulus has been provided recently² by the isolation of the new gibberellin, GA₃₇ (2), as its β -D-glucosyl ester, from mature seed of *Phaseolus vulgaris*. The challenging step in the conversion of GA₁₃ (5) into GA₁₅ (1) and GA₃₇ (2) is the selective reduction of the highly hindered 10-carboxy-group in GA₁₃ (5). This selective reduction has now been effected via the $20 \rightarrow 3$ -lactone (10) in which the lactonic carbonyl function is held in an accessible orientation (see 10a). The following partial synthesis of GA₃₇ (2) has thus been developed.

The $20 \rightarrow 3$ -lactone (10) was prepared by reduction (NaBH₄) of 3-oxo-GA₁₃ (6), followed by pyrolysis at 135° of the resultant mixture of the $20 \rightarrow 3$ -lactone (10) and the hydroxy-acid (7). Reduction (LiBH₄) of the $20 \rightarrow 3$ lactone (10) in tetrahydrofuran at 20° directly gave the $19 \rightarrow 20$ -lactone (3), oxidised by Jones' reagent to the ketone (4). Reduction [Al(OPri)3 in PriOH] of the latter compound gave a 1:1 mixture of the 3β -(2) and 3α -(3) epimers which were separated by t.l.c. on silica gel with EtOAc-light petroleum-AcOH (50:50:1). The faster moving 3β -isomer (2) was identical (m.p., g.l.c., and spectroscopic properties) with GA₃₇ (2), prepared by reduction of GA_{36} ; the methyl esters were also identical. In the Meerwein-Ponndorf reduction of the isomeric 3-oxo-20 → 19-lactone (11) Cross and Stewart1 obtained mainly the 3α -epimer (12) and only traces of the 3β -epimer (13) (in our hands 15-20% by g.l.c.). Molecular models indicate that

(3)
$$R = H_{\lambda} \alpha - OH$$

(5)
$$R^1 = H, \beta - OH, R^2 = R^3 = H$$

(6)
$$R^1 = 0$$
, $R^2 = R^3 = H$

(7)
$$R^1 = H_1 \alpha - OH_1 R^2 = R^3 = H$$

(8)
$$R^1 = H$$
, $\beta = OTHP$, $R^2 = Me$, $R^3 = H$

(9)
$$R^1 = 0$$
, $R^2 = R^3 = Me$

(11)
$$R^1 = O_1 R^2 = CO_2 H$$

(12)
$$R^1 = H_1 \alpha - OH_1 R^2 = CO_2 H$$

(13)
$$R^1 = H_1 \beta - OH_1 R^2 = CO_2 H$$

hydride transfer from the α -face in the aluminium isopropoxide-lactone (11) complex is impeded by the 19-methylene groups. In the less encumbered 3-oxo-GA₁₃-trimethyl ester (9), the 3β -alcohol was found to be the major product.

Thus reduction with aluminium isopropoxide of 3-oxogibberellins may only exceptionally yield the unnatural 3α -hydroxy-epimers.

We thank the S.R.C. for financial support.

(Received, 12th May 1972; Com. 810.)

B. E. Cross and J. C. Stewart, J. Chem. Soc. (C), 1971, 245.
K. Hiraga, T. Yokota, N. Murofushi, and N. Takahashi, Agric. Biol. Chem. (Japan), 1972, 36, 345.
J. R. Bearder and J. MacMillan, Agric. Biol. Chem. (Japan), 1972, 36, 342.