A Useful Method for α -Methylation of γ -Butyrolactones

By GARY H. POSNER* and GARY L. LOOMIS

(Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218)

Summary γ -Butyrolactone in tetrahydrofuran at -78° reacts with lithium di-isopropylamide or lithium isopropylcyclohexylamide and then with an excess of deuterium oxide, methyl iodide, or allyl bromide to form α -deuterio-, α -methyl-, or α -allyl- γ -butyrolactone in good yield.

$$O \xrightarrow{(i) R_2 NLi/THF/-78^{\circ}} O \xrightarrow{(ii) Me1/-78^{\circ}, then = 30^{\circ}} O \xrightarrow{(iii) Me1/-78^{\circ}, then = 30^{\circ}} O$$

The lithium dialkylamides were generated by reaction of the corresponding amines with n-butyl-lithium at -78° in tetrahydrofuran as previously described.⁴ To prevent self-condensation,^{1b,5} a tetrahydrofuran solution of the lactone was added slowly to the solution of lithium amide (1 equiv.). Portions were removed *via* a pre-cooled syringe at -78° , -30° , and 0° and were added to a cold solution of tetrahydrofuran containing an excess of deuterium oxide. Only from the -78° portion could lactone be recovered (91% yield); the higher-temperature portions gave largely intractable material. Mass spectral and n.m.r. analysis of recovered lactone indicated 62% deuterium incorporation in the α -position only.[‡]

 \dagger The α -methyl- γ -butyrolactone structural unit is found in many naturally occurring eudesmanolides, guaianolides, germacranolides, and pseudoguaianolides.

In connection with our work on total synthesis of sesquiterpene lactones we required a convenient procedure for α methylation of γ -butyrolactones.† γ -Butyrolactones have been α -alkylated indirectly by hydrogenation of the corresponding α -alkylidene-lactones;¹ γ -butyrolactams have been α -alkylated in modest yields,² and one $\Delta_{\alpha\beta}$ -butenolide has been α -methylated in unspecified yield.³ We report now the first direct conversion of γ -butyrolactone into α -methyl- γ -butyrolactone, using a lithium dialkylamide as a nonnucleophilic base to form the lactone enolate⁴ which reacts under mild conditions with methyl iodide:

[‡] Deuterium oxide quenching of ester enolates⁴ has been reported to yield esters with 45-75% deuterium incorporation.

Reaction	of lithium	isopropy	lcyclohex	ylamide	with y	y-butyroi	actone
in tetrahy	drofuran d	$t - 78^{\circ}$,	followed	by add	ition of	f methyl	iodide

Equiv. of amide	α- Methyl- γ-butyrolactone	% Yield ^a αα-Dimethyl- γ-butyrolactone	γ-Butyro- lactone	
1.0	36	0	trace	
$1 \cdot 2$	56	trace	0	
1.5	70	5	0	
2.0^{b}	80	13	0	
0 37: 11	1, 1, 1,	1 41 1 1 1		

^a Yields were determined by analytical g.l.c. using internal standards and are based on y-butyrolactone.

^b The reason why an excess of amide is required for good mass balance is unclear; solvents and reactants were dried rigorously before use.

 α -Methyl- γ -butyrolactone is formed by adding an excess of methyl iodide to a solution of the γ -butyrolactone enolate at -78° , and then allowing the reaction mixture to reach -30° (ca. 1 h) at which temperature it is kept for 2-3 h. Anhydrous hydrogen chloride is then added, the solvent is removed under reduced pressure, and the residue extracted with benzene. The yield of α -methylated lactone increases as the amount of lithium dialkylamide is increased from 1 to 2 equiv; with more than 1 equiv. of amide, however, $\alpha\alpha$ -dimethylation begins to occur (Table).§

 α Allyl- γ -butyrolactone¶ is prepared in 74% yield (with essentially no diallylation occurring) by adding an excess of allyl bromide to the lactone enolate (generated using 2 equiv. of lithium di-isopropylamide). Addition of nbutyl iodide to the enolate produces α -n-butyl- γ -butyrolactone in very low yield.** Apparently, effective alkylation of the y-butyrolactone enolate is limited to those electrophiles which readily undergo $S_N 2$ displacement reactions.⁶

The stereochemistry of this lactone methylation remains to be established using suitable substituted butyrolactones and various methylating agents.

This work was supported by a Public Health Service Research Grant from the National Cancer Institute.

(Received, 22nd May 1972; Com. 886.)

§ Conversion of an α-methyl-γ-butyrolactone into the corresponding αα-dimethyl-lactone has been reported using trityl-lithium and methyl iodide (A. E. Greene, J.-C. Muller, and G. Ourisson, Tetrahedron Letters, 1971, 4147).

 \P Satisfactory microanalyses were obtained for new compounds. ** No O-alkylated lactone enolate was detected in any of our alkylation reactions.

¹ (a) H. Zimmer and J. Rothe, J. Org. Chem., 1959, 24, 28, and refs cited therein; (b) W Reppe, et al., Annalen, 1955, 596, 158. ² P. G. Gassman and B. L. Fox, J. Org. Chem., 1966, 31, 982. ³ E. Piers, M. B. Geraghty, and R. D. Smillie, Chem. Comm., 1971, 614.

- ⁴ M. W. Rathke and A. Lindert, *J. Amer. Chem. Soc.*, 1971, **93**, 2318. ⁵ O. C. Curtis, jun., J. M. Sandri, R. E. Crocker, and H. Hart, Org. Syntheses, Coll. Vol. IV, 1963, 278.
- ⁶ A. Streitwieser, jun., 'Solvolytic Displacement Reactions', McGraw-Hill, New York, 1962, p. 13.