The Stereochemistry of the β -Hydroxyleucine Unit of Frangulanine

By M. GONZÁLEZ SIERRA, O. A. MASCARETTI, F. J. DIAZ, and E. A. RÚVEDA*

(Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Junin 956, Buenos Aires, Argentina)

and CHING-JER CHANG, EDWARD W. HAGAMAN, and ERNEST WENKERT* (Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary ¹H n.m.r. spectral analysis shows that the β -hydroxyleucine portion of the peptide alkaloids frangulanine and discarine A and B possess an *erythro*-configuration; stereochemical analysis of frangulanine by enzymic oxidation of its product of reduction and subsequent hydrolysis reveals the subunit to be of the L-*erythro*- β -hydroxyleucine-type.

NUMEROUS peptide alkaloids contain a 14-membered heterocycle^{1,2} which has been shown in most cases to be composed of an α -amino-acid, β -amino-p-hydroxystyrene, and β -alkyl- or β -aryl-serine. The last-named have been considered to possess a *threo*-configuration since *threo*- α amino- β -hydroxy-acids were isolated from the acid hydrolysates of some of the alkaloids.² Since, however, the serine unit exists as an α -amino- β -aryloxyamide moiety in the alkaloids and since acid hydrolysis of the β -aryloxyfunction can occur only by solvolytic β -CO bond cleavage or by a β -elimination/ β -addition path, the isolation of a *threo*-acid may be of no relevance to the stereochemistry of the β -substituted serine portion of the alkaloids.³ As a consequence the stereochemistry of this all-important subunit was reinvestigated and frangulanine (1) and discarine A (2) and B (3), the major alkaloids of *Discaria* longispina,⁴ utilized for this purpose.

The 220 MHz ¹H n.m.r. spectra of $(CD_s)_2$ SO solutions of the three bases (frangulanine at 80°) exhibit α - and β methine signals of the common β -oxyleucine unit at 4.40 \pm 0.02 and 4.77 \pm 0.04 p.p.m.; respectively. Furthermore, the α -methine signal appears in form of a doublet of J = 8 Hz and that of the β -methine as a doublet of doublets of J = 8 and 2 Hz in $(CD_3)_2SO$ solutions of the alkaloids whose amido-hydrogens have been replaced by deuteriums. Since coupling of 8 Hz reflects an α -H/ β -H dihedral bond relationship⁵ of 0-20° or 150-180° and the fairly rigid 14-membered ring of (1)-(3) permits only the latter geometry, an anti, i.e. erythro-configuration can be assigned to the β -oxyleucine portion of the alkaloids. Similarly, the 7.5 and 8 Hz α -H/ β -H coupling reported for the β -oxyphenylalanine unit of debenzoylaralionine A⁶ and canthiumine,⁷ respectively, favours an *erythro*-form for this part of their 14-membered rings. Thus, on the basis of ¹N n.m.r. data, the natural bases aralionine A.⁶ canthiumine,⁷ discarine A⁴ and B,⁴ frangulanine,^{4,8} and lasiodine B³ have an erythro- β -substituted serine moiety in common.

The stereochemistry of the β -oxyleucine unit of frangulanine (1) was investigated also by chemical means. For this purpose authentic threo- and erythro- β -hydroxyleucine were prepared⁹ and their differentiability determined on an amino-acid analyzer and by gas chromatography of the methyl esters of their N-trifluoroacetyl derivatives. These analytical methods were utilized to show that hydrolysis of dihydrofrangulanine in 6n-hydrochloric acid at 120° for 12 h yielded β -hydroxyleucine of only *threo*-configuration,

in accordance with the findings of Tschesche.⁸ However reduction of dihydrofrangulanine by lithium in liquid methylamine and acid hydrolysis of the product yielded solely erythro- β -hydroxyleucine. Since the reduction transforms the aromatic nucleus into an enol ether and since hydrolysis of the latter liberates the hydroxy-group of the β -oxyleucine unit without affecting the chirality of the carbon centre to which it is attached, frangulanine (1) contains an erythro- β -aryloxyleucine moiety. Finally, the latter was shown to possess the L-configuration as follows. A part of the hydrolysate of the reduction product of dihydrofrangulanine was subjected to the action of hog kidney p-amino-acid oxidase, another to rattlesnake venom L-amino-acid oxidase, and a third left untreated. Automatic amino-acid analysis of the three samples showed erythro- β -hydroxyleucine to be absent from the solution treated with the L-amino-acid oxidase, but present in the other two samples. Since three- β -hydroxyleucine, as threonine,¹⁰ is inert to the two oxidases, the configuration of the Tschesche hydrolysis product⁸ remained undetermined

We thank the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, the Instituto Nacional de Farmacología y Bromatologaí, and Eli Lilly for support of this work.

(Received, 5th June 1972; Com. 949.)

¹ E. W. Warnhoff, Fortschr. Chem. org. Naturstoffe, 1970, 28, 163. ² M. Païs and F.-X. Jarreau, in "Chemistry and Biochemistry of Amino Acids, Peptides and Proteins", ed. B. Weinstein, Marcel Dekker, New York, 1971, p. 127.

³ French workers came independently to the same view recently (J. Marchand, M. Païs, and F.-X. Jarreau, Bull. Soc. chim. France, 1971, 3742). Their consequent stereochemical analysis of the β -hydroxyleucine unit involved another alkaloid and other techniques than those used in the present work.

⁴ O. A. Mascaretti, V. M. Merkuza, G. E. Ferraro, E. A. Rúveda, C.-J. Chang, and E. Wenkert, *Phytochem.*, 1972, 11, 1133.
⁵ Inter alia R. J. Weinkam and E. C. Jorgensen, J. Amer. Chem. Soc., 1971, 93, 7038; A. E. Tonelli, *ibid.*, 1972, 94, 346.
⁶ R. Tschesche, L. Behrendt, and H.-W. Fehlhaber, *Chem. Ber.*, 1969, 102, 50.
⁷ G. Boulvin, R. Ottinger, M. Païs, and G. Chiurdoglu, *Bull. Soc. chim. belges*, 1969, 78, 583.
⁸ R. Tschesche, H. Last, and H.-W. Fehlhaber, *Chem. Ber.*, 1967, 100, 3937.
⁹ Y. Ikutani, T. Okuda, and S. Akabori, *Bull. Chem. Soc. Japan*, 1960, 33, 582.
¹⁰ J. P. Greenstein and M. Winitz, "Chemistry of the Amino Acids", Wiley, New York, 1961, vol. 3, p. 2251.