Catalytic Hydrogenation of Benzene by Lamellar Compounds C₈K and C₂₄K

MASARU ICHIKAWA,* YUKIO INOUE, and KENZI TAMARU (Sagami Chemical Research Center, Onuma, Sagamihara, Kanagawa, Japan)

Summary Graphite-potassium (C_8K and $C_{24}K$) lamellar compounds behave as catalysts, similar to transitionmetal catalysts, for the hydrogenation of benzene to cyclohexane in high yields. LAMELLAR compounds such as C_8K and $C_{24}K$, have been shown to act, like transition metals, as catalysts in the hydrogenation of carbon monoxide, olefins, and acetylenic compounds.¹ We now report that benzene is also hydrogenated to cyclohexane in high yield by graphite-potassium lamellar compounds.

Two lamellar compounds, C_8K (golden) and $C_{24}K$ (deep blue), were prepared by treating pure graphite[†] with stoicheiometric amounts of distilled potassium metal[‡] *in* vacuo at 300 °C and 350 °C, respectively. C_8K and $C_{24}K$ (ca. 2.6 g) were treated with 0.2 mol of benzene in a 300 ml autoclave without contact with oxygen or moisture. When the reaction was initiated under 100 Kg cm⁻² pressure of hydrogen between 50° and 300 °C, the total 250 °C with C_{24} K as catalyst. There was almost no hydrogenation below a hydrogen pressure of 10 kg cm⁻². On increasing the molar ratio of hydrogen: benzene to > 3.0, the yield of cyclohexane reached almost 100% in 2 h at 250 °C under 100 kg cm⁻² pressure of H₂. Alkylbenzenes such as toluene and propylbenzene were also hydrogenated to the corresponding cyclohexane derivatives in the presence of C₂₄K at 100 atm of H₂ and 200 °C, but their dealkylation reaction took place to produce methane and cyclohexane as by-products.

TABLE. Hydrogenation of benzene in the presence of graphite-potassium lamellar compounds and other catalysts

							Selectivity to
Catalyst		Benzene	H,	Temp	Time	Yield	cyclohexane
(g)		(mol)	(kg cm-2)	(°C)	(h)	(%)	(%)
$C_8 K(0.022 mols)$	 	0.2	100	250	5	60.8	99.8
• •		0.2	150	250	5	79.7	99 ·6
C ₂₄ K (0.006 mols)	 	0.2	97	250	2	86	99.9
K-C ^a	 	0.2	100	250	5	37	99.9
C ₂₄ Li (0.006 mols)	 ••	0.2	100	250	5	14.1	99.9
Кр	 	0.2	100	250	5	2.7	87°
C ₂₄ K (0.006 mols)	 • •	0.2	103	50	5	0.2	
		0.2	100	150	5	21.5	99.9
		0.2	100	300	5	57	99-9
		0.2	48	250	5	6.7	99.9
		0.2	72	250	5	35	99.9
		0.2	136	250	2	80	99 ·9
		Toluene				methylcyclohexane	
		0.4	100	250	5 5	8.1	39
		0.4	100	150	5	$1 \cdot 2$	92
		Propylbenzene			propylcyclohexane		
		0.13	95	200	5	49	98.6

^a Active carbon (2.0 g) was treated with K(0.3 g) in a sealed tube at 300 °C for 20 h; ^b potassium metal was dispersed in benzene ^c cyclohexene: 0.3%; ^d by-product; benzene, cyclohexane, and methane.

pressure decreased over several hours and temperature was kept above 200 °C.

Cyclohexane was selectively (above 98%) produced in a yield of 80–90% at 250 °C in 2 h without any gaseous or polymer products (see Table). C_{24} K exhibited much higher catalytic activity for the benzene hydrogenation than C_8 K under the similar reaction conditions. The catalysts made of potassium and active carbon (surface area, 890 m² g⁻¹) have only a small catalytic activity although potassium was dispersed over the entire carbon surface. The maximum yield of cyclohexane was obtained at temperatures over

The standard catalytic activity of $C_{24}K$ (i.e. activity per unit surface area) for the hydrogenation of benzene was almost equal to that of the activated Raney-Ni and of platinum at lower pressures 10—100 kg cm⁻² and temperatures 150—250 °C. C_8K and $C_{24}K$ have a surface area of less than 10 m² g⁻¹. This is the first observation that the non-transition metal catalysts such graphite-potassium lamellar compounds exhibit a marked activity for the hydrogenation of benzene under mild conditions.

(Received, 12th June 1972; Com. 1002.)

† The graphite (from Union Carbide Co.) contains less than 5 p.p.m. of Fe, Al, and Si as ash.

 \ddagger Potassium metal (from Merck Reagent Co.) was of 99.9% purity with Na, Ca, Fe, and Mg as impurities being less than 0.01%. § These lamellar compounds are unstable in air, water vapour, acids, etc., and must be used with care in a dry-box. When hydrogen gas was preadsorbed sufficiently, the complexes were comparatively stable in the ordinary procedures.

¹ K. Tamaru, Catalysis Rev., 1970, 4, 161.