High-resolution X-Ray Emission Study of Central Atom-Ligand Bonding in Phosphorus-containing Compounds

By K. Myers and G. Andermann*

(Department of Chemistry and Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii)

Summary The capability of X-ray photon-emission spectroscopy to characterize and distinguish specific central atom-ligand orbital bonding is discussed.

We have investigated the K_{β} emission spectrum for phosphorus in various environments. Since photon-emission spectra, in contradistinction to photoelectron spectra, are governed by electric-dipole selection rules^{1,2} the K_{β} spectra to be discussed below contain detailed information about the nature of the central P atom 3p orbital contribution to specific molecular orbitals.³

FIGURE 1. (a) $Ca_3(PO_4)_2$; (b) $CaHPO_3$; (c) H_3PO_4 .

For the highly symmetrical phosphate ion, $PO_4^{3-}(T_d)$, the electronic environment was modified by successive replacement of the oxygen ligands with hydrogen to give the

FIGURE 2. (a) $Ni[S_2P(C_2H_5)_2]_2$; (b) $Ni[S_2P(OCH_3)_2]_2$.

phosphite (HPO₃²⁻, C_{3v}) and hypophosphite (H₂PO₂⁻, C_{2v}) ions, or with hydroxo-ligands to produce phosphoric acid (H₃PO₄, C_{3v}) and its mono- (H₂PO₄⁻⁻, C_{2v}) and di- (HPO₄²⁻, C_{3v}) basic salts. The resultant K_{β} spectra are shown in Figure 1.

CNDO/2 Calculations indicate that the K_{β} band for PO₄³⁻ originates from a molecular orbital composed of phosphorus 3p and oxygen 2p atomic orbitals, whereas the low energy band, K_{β} represents a molecular orbital with phosphorus 3p and oxygen 2s contributions. For HPO₃²⁻, K_{β} and K_{β} .' originate primarily in molecular orbitals describing P_{3p}-O_{2p} and P_{3p}-O₂, bonding, respectively.³ The $K_{\beta x}$ transition, however, arises predominantly from a molecular orbital comprised of phosphorus 3p and hydrogen 1s atomic orbitals. This band represents P_{3p}-H₁, bonding in the HPO₃²⁻ molecule.³

For H_3PO_4 , K_{β} is again attributed primarily to $P_{3p}-O_{2p}$ bonding, whereas $K_{\beta x}$ constitutes a set of molecular orbitals formed predominantly from the interactions of the phosphorus 3p and hydroxo-oxygen 2p atomic orbitals, thus representing $P_{3p}-O_{2p}H_{1s}$ bonding. K_{β} contains mostly contributions from both ligands' 2s orbitals ($P_{3p}-O_{2s}$ and $P_{3p}-O_{2r}H_{1s}$ bonding) and is not resolved here. These same J.C.S. Снем. Сомм., 1972

effects are observed for the other hydroxo-compounds with the intensity of $K_{\beta x}$ increasing upon successive substitution of hydroxo-ligands for oxygen. Therefore, for the phosphorus oxy-anions each spectral band is associated with the bonding between a specific ligand orbital and the phosphorus 3p atomic orbital.

Further evidence of this unique ligand interaction with the central atom was observed in the investigation of a series of compounds of the type, $\mathrm{Ni}[\mathrm{Si}_2 P(R)_2]_2{}^{4,5}$ where R is an alkyl or alkoxo-group. Sample spectra for the methoxoand ethyl compounds are given in Figure 2.

The CNDO/2 results are similar to those for the hydroxocompounds, indicating several sets of molecular orbitals

- ¹ D. S. Urch, *Quart. Rev.*, 1971, 25, 343.
- ²G. Andermann and H. C. Whitehead, Adv. X-Ray Analysis, 1971, 14, 453.
- ⁶ K. Myers, M. S. Thesis, University of Hawaii, 1972.
 ⁴ Q. Fernando and C. D. Green, J. Inorg. Nuclear Chem., 1967, 29, 647.
 ⁵ P. S. Shetty and Q. Fernando, Acta Cryst., 1969, B25, 1294.

with differing ligand orbital contributions. Each spectral band is again attributable to specific ligand orbital bonding. For example, the K_{β} bands for the methoxo-compound, bis(dimethyl dithiophosphinato-OO')nickel(II) may be designated as:

$$\begin{array}{ll} K_{\beta A} \colon {\rm P}_{3p} - {\rm S}_{3p} & K_{\beta C} \colon {\rm P}_{3p} - {\rm S}_{3s} \\ K_{\beta B} \colon {\rm P}_{3p} - {\rm O}_{2p} {\rm C}_{2p} & K_{\beta D} \colon {\rm P}_{3p} - {\rm O}_{2s} {\rm C}_{2s} \end{array}$$

An analogous assignment is possible for the ethyl compound.

Support of the National Science Foundation is acknowledged.

(Received, 11th April 1972; Com. 613.)