Complete Analysis of the Fast Fourier Transformed 100 MHz 'H Nuclear Magnetic Resonance Spectra of Oxidized and Reduced Pyridine Mononucleotides

By RAMASWAMY H. SARMA* and **RICHARD** J. **MYNOTT**

(Department of Chemistry, State University of New York at Albany, Albany, New York **12222)**

Summary Complete analysis of the fast Fourier transformed lH n.m.r. spectra of oxidized and reduced pyridine mononucleotides show significant differences in their solution conformation,

THE **lI-1** 8K fast Fourier transformed (FFT) **100MHz** n.m.r. spectrum *of* oxidized pyridine mononucleotide, p-NMN (I), along with the **LAOCN I11** computer simulated ribose region is shown in the Figure. The chemical shifts and coupling constants at two **pH** values are shown in the Table. The previous assignment1 of the **C (1')** H resonance of reduced coenzyme $(e.g. \beta\text{-NMMH}; \text{II})$ was found to be erroneous. The chemical shifts of the various protons of β -NMN (0.4-0.0025_M) and β -NMNH (0.1-0.01_M) showed **a** concentration dependence of less than **1-2 Hz** indicating that these nucleotides do not undergo intermolecular stacking. The magnitude of the coupling constants

 J_{5a} ³¹P and J_{5b} ³¹P for β -NMN and β -NMNH (Table) show, according to Tsuboi *et al.*,² that the torsional isomer

	Chemical shifts (δ/Hz)				Coupling constants $\frac{1}{12}$		
Nucleotides	Proton	pH 8.3	pH 40	Δδ pH $8.3 \rightarrow 4.0$	Nuclei Coupled	pH 8.3	pH 40
β -NMN	$2-H$	640.9	$628 - 7$	12.2	$2-4$	1.5	1.5
	$4-H$	580.9	$581-2$	$\bf{0}$	$2 - 5$	Nd.	N.d.
	$5-H$	$512-6$	512.6	$\bf{0}$	$2 - 6$	N.d.	N.d.
	$6-H$	615.6	610.9	4.7	$4 - 5$	8.2	8
	$1'$ -H	$300 - 4$	$304 - 4$	-4.0	$4 - 6$	1.5	$1-5$
	$2'$ -H	$148-1$	139.0	$9-1$	$5-6$	6.3	6.3
	$3'$ -H	$129 - 2$	$127 - 0$	$2-2$	$1' - 2'$	$5-7$	$5·2$
	$4'$ -H	142.0	147.9	-5.9	$2' - 3'$	5.0	$5-0$
	$5a'$ - H	$101-3$	112.8	-11.4	$3' - 4'$	$2\cdot 1$	2·6
	$5b'$ -H	84.2	97.3	$-13-1$	$4'$ –5a $'$	2·6	2.4
					$4'$ -5b'	$2-0$	2.3
					$5a'$ - ^{31}P	4.2	$4-4$
					5b′–81P	4.4	$5-1$
					$5a'$ - $5b'$	$12 \cdot 1$	$12-1$
β -NMNH \mathfrak{d}	$2-H$	$397 - 5$	$396 - 1$	1.4	$2-6$	$1-7$	1.6
	$6-H$	$304 - 6$	$300 - 2$	4.4	$5-6$	$8-2$	$8-1$
	$5-H$	184.3	183.7	0.6	$4 - 6$	1·6	1.8
	2×4 -H	$-11-7$	-12.0	$\bf{0}$	$4 - 5$	3.5	3.4
	$1'$ -H $2'$ -H	$170 - 4$	$171-9$ 109.3	-1.5	$2-5$	Not resolved	
		115·1		3.8	$2-4$		
	$3'$ -H	$106 - 4$	$104 - 7$	1.7	$1' - 2'$	6.8	6.8
	$4'$ -H	$90 - 0$	92.2	-2.2	$2' - 3'$	$5-4$	5.4
	$5a'$ - H	67.5	79.5	-12.0	$3' - 4'$	1.9c	$1-8$
	$5b'$ -H ^d	67.5	79.5	-12.0	$4' - 5a'$ ^d $4'$ –5b $'$	4.0	3.0
					$5a'$ -31 Pd $5b' - ^{31}P$	4.8	$5-1$

Chemical shifts and coupling constants of 8-NMN and 8-NMNH; 0.1 *M-solution* 100 % D,O. *Data from* **100** MHz *spectra.* Chemical shifts (δ/Hz) Coupling constants (J/Hz)

TABLE

a Chemical shifts are accurate to at least 0.2 Hz; coupling constants to 0.1 Hz. For β -NMNH (low pH), chemical shifts are accurate to 0.3 Hz, coupling constants to 0.2 Hz. b pH 8.1 and 5.0. **C Prom 220 MHz n.m.r.** spectrum. **d** No difference in chemical shifts observable between 5a'-H and 5b'-H even at 220 MHz.

FIGURE. 8K Fourier-transformed ¹H n.m.r. spectrum of 0·1M-
solution of β-NMN in '100%' D₂O, pH 8·3; number of pulses 500;
pulse width 40 µs; sampling frequency 2000 Hz s⁻¹. P = pyridine.
Chemical shifts are expresse 100 MHz *n.m.r. system. The spectrum was recorded using a Digilab* FTS-NMR-3-system interfaced to a Varian HA-100D NMR spectrometer, with a ¹⁹F lock. The total memory of the *data system was* 132K *permitting a maximum of* 32K *trans*forms (double precision 32 bits per word length). Bottom part
shows the computer simulated spectrum of the ribose region of
β-NMN. One of the transitions visible in the simulation was

constrained to the $O(5')-C(5')$ bond of β -NMN and β -NMNH is predominently *gauche-gauche*. Calculations³ of the torsional isomer population around the $C(5')-C(4')$ bond from the $J_{4'-58}$ and $J_{4'-5b}$ values show that over **90%** of P-NMN molecules exist in the gauche-gauche form constrained to the $C(5')-C(4')$ bond whereas in the case of P-NMNH at pH **8.0** only **50%** of the molecules exhibit gauche-gauche conformation. **A** qualitative application of Karplus equation to the $J_{1'-2}$, $J_{2'-3}$, and $J_{3'-4}$ (Table) values of β -NMN and β -NMNH indicate that the ribose fragment of both compounds exists as an equilibrium mixture of S'-endo- and 2'-endo-structures, the *2'-endo*population being larger for β -NMNH. The pH profiles for β -NMN (pH range 2-9, increments of 0.5 pH units) reveal that the protonation of the phosphate group (the **pK** of the phosphate group was determined by 31P n.m.r. measurements by the method in Sarma and Mynott⁴) perturbs both pyridine 2-H and 6-H resonance, the perturbation of 2-H being about three times larger than that of 6-H. Thus the data clearly indicate that β -NMN prefers to exist in the syn-form (I), as has been suggested by Sarma and Kaplan⁵ from crude pH studies. Qualitative calculations show that about **78%** of the molecules exist in the syn- and **22%** in the anti-conformation. No extensive **31P** and 1H n.m.r. studies as a function *of* pH is possible for β -NMNH since this nucleotide decomposes at pH values below 6.0. However, the FFT mode of operation enabled us to obtain high quality spectra very quickly at pH 5.0 . The data for β -NMNH (Table) indicate that this nucleotide preferentially exists in the *anti* conformation *obscured by the* HDO *resonance.* (II), contrary to the predictions of Sarma and Kaplan5 from

ring current considerations. The data in the Table make possible a complete analysis by **13C** FFT n.m.r. methods of the ¹³C n.m.r. spectra of β -NMN and β -NMNH by proton off-resonance spin-decoupling.⁶

This research was supported by grants from the National Science Foundation and the National Institutes of Health.

(Received, 22nd May 1972; Corn. 870.)

¹ W. L. Meyer, H. R. Mahler, and R. H. Baker, jun., *Biochem. Biophys. Acta*, 1962, 64, 353; O. Jardetzky and N. G. Wade-Jardetzky, *Biol. Chem.*, 1966, 241, 85; R. H. Sarma and N. O. Kaplan, *ibid.*, 1969, 244, 771; W. \bm{b} io

-
- F. E. Hruska, A. A. Grey, and I. C. P. Smith, *J. Amer. Chem. Soc.*, 1970, 92, 4088.
R. H. Sarma and R. J. Mynott, *Org. Magnetic Resonance*, in the press.
R. H. Sarma and N. O. Kaplan, *Biochem. Biophys. Res. Comm.*, 1969
-
-
-