Stability of N₂O⁻ in Cyclohexane

By F. S. DAINTON, P. O'NEILL, and G. A. SALMON*

(*University of Leeds, Cookridge High Energy Radiation Research Centre, Cookridge Hospital, Leeds* LS 16 GQB)

Summary Pulse-radiolysis studies show that N_2O^- formed in cyclohexane solution can transfer an electron rapidly to galvinoxyl (GAL), a property shared by the anions of O_2 , SF_6 , CO_2 , and CH_3NO_2 but not by those of I_2 , CCl_4 , and $C_2(CN)_4$; N₂O⁻ is estimated to have a lifetime in cyclohexane not less than $20 \mu s$.

NITROUS OXIDE is a powerful electron scavenger. Massspectrometric studies show that the appearance potential of the 0^- ion is too small to be measured¹ and hence ΔE^{\bullet} for the dissociative electron capture process is ≈ 0 . However, the experiments of Holtslander and Freeman² suggest that N₂O⁻ can have a lifetime of 10^{-4} to 10^{-3} s in the gas phase and the question arises as to whether N_2O ⁻ can persist in liquids sufficiently long to be of chemical significance. In protic media the evidence³ suggests that, if it is formed, N_2O^- rapidly decomposes to form N_2 and the oxidising species O^- but in cyclohexane the dependence of $G(N_2)$ on [N₂O] in y-irradiated solution of N₂O has been interpreted by Warman *et al.*⁴ as indicating that N_2O^- formed in reaction (1) can persist to react with another molecule of N,O according to equation **(2).**

$$
N_2O + e^- \longrightarrow N_2O^-
$$
 (1)

$$
N_2O^- + N_2O \longrightarrow N_2 + N_2O_2^-
$$
 (2)

In addition, Mishra and Symons⁵ have recently presented e.s.r. spectroscopic evidence which suggests that N_2O^- is stable at **77** K in a carbon disulphide matrix.

It appears that if N_2O^- exists, its absorption spectrum does not permit its detection by existing pulse-radiolysis techniques. However, by using a second solute that has a higher electron affinity than N_2O and forms an anion with a characteristic intense absorption spectrum it should be possible to detect formation of the anion by electron transfer from N_2O^- . Capellos and Allen⁶ have shown that the stable free-radical galvinoxyl (GAL) is also a powerful electron scavenger, forming the anion, GAL-, with a strong optical absorption **(Amax** 580 nm) which can be used to measure the yield of free electrons and we now report data which show that GAL can rapidly extract an electron from $N₂O⁻$.

Solutions of GAL in cyclohexane either deaerated by several freeze-pump-thaw cycles, great care being taken to remove any carbon dioxide, or saturated with N_2O , SF_6 , O_2 , or CO_2 , were irradiated with 25, 200, or 600 ns pulses of **3** MeV electrons and the formation of GAL-, which was identified by its absorption spectrum,⁶ was followed at 580 nm using methods already described.'

For carefully deaerated 5×10^{-5} M-solutions of GAL in cyclohexane at a dose per pulse **(300** rad [GAL-] increased in a pseudo-first-order manner over about three half-lives with $t_1 = 2 \mu s$, indicating the occurrence of reaction (3) in which the electrons are uniformly distributed in space and

$$
e^- + GAL \longrightarrow GAL^-
$$
 (3)

 $k_3 \simeq 7 \times 10^{9} \text{M}^{-1} \text{s}^{-1}$. At high doses per pulse some electrons react with positive ions formed in the primary

act and the growth of [GAL-] deviates from the first-order law.

Iodine is known to be an efficient electron scavenger in cyclohexane and the observation that $10^{-3}M-I_2$ completely prevented the formation of GAL- was expected. A similar effect was observed in solutions containing the electron scavengers CCl₄(10⁻¹M) and C₂(CN)₄ (10⁻³M). In marked contrast the maximum yield of GAL ^{-from 10^{-5}} to 10-4M-solutions of GAL was unaffected by the presence of N_2O even when $[N_2O] = 10^4$ [GAL] *i.e.* when virtually all the electrons are expected to be scavenged by N_2O . These observations clearly prove (a) that reaction **(4)** is occurring and (b) that the electron affinity of GAL is less than those of I_2 (1.6–2.4 eV),⁸ CCl₄(2.12 eV),⁸ and C₂(CN)₄ (2.88 eV),⁸ and greater than that of N₂O (\simeq 0.1 eV)⁴. From the arly prove (a) that reaction (4) is occurring

electron affinity of GAL is less than those

V),⁸ CCl₄(2.12 eV),⁸ and C₂(CN)₄ (2.88 eV),⁸

an that of N₂O (\simeq 0.1 eV)⁴. From the

N₂O⁻ + GAL → N₂O + G

$$
N_2O^- + GAL \longrightarrow N_2O + GAL^-
$$
 (4)

first-order growth (see Figure) of $[GAL^-]$ in N₂O saturated solutions subjected to doses less than 500 rad we calculate

FIGURE. Growth of GAL⁻ in N₂O-saturated cyclohexane solution. $[GAL] = 5 \times 10^{-5}$ M, $\lambda = 580$ nm, *pulse length* = 0.2 μ s, *dose* $\simeq 300$ rads.

 $k_4 = (1.0 \pm 0.2) \times 10^{10} \text{M}^{-1} \text{s}^{-1}$ and since for solutions containing 10-5M-GAL this growth continues for more than $20 \mu s$, N₂O⁻ must be stable for at least this period in cyclohexane.

At doses > 500 rad/pulse the growth of [GAL⁻] deviates from first-order in a manner attributed to the concurrent reaction (5) where CH⁺ is a cyclohexane cation and P

$$
N_2O^-+CH^+\longrightarrow N_2+P\qquad \qquad (5)
$$

denotes oxidation products of cyclohexane. *k,* was estimated to be $(2.3 \pm 0.8) \times 10^{12} M^{-1} s^{-1}$ by observing the growth of $[GAL^-]$ in solutions containing $10^{-5}M < [GAL]$ $< 10^{-4}$ M subjected to doses/pulse up to 4 k rad. The data were treated by the method of least-square refinements

with numerical integration of the rate equations and making corrections for the decay of GAL⁻ in reaction (6).

$$
GAL^{-} + CH^{+} \rightarrow Product
$$
 (6)

From the decay of GAL⁻ after its formation in reaction (4) had become negligible, k_6 was found to be (6.5 ± 0.5) \times 10¹¹M⁻¹s⁻¹.

Data obtained for solutions of GAL containing other solutes show that GAL can abstract electrons from O_2 , SF_{6} , and CO_{2}^{-} ($k \approx 2 \times 10^{10} \text{M}^{-1} \text{s}^{-1}$) and $CH_{3}NO_{2}^{-}$ ($k \approx 8$

1 G. J. Schultz, *J. Chew. Phys.,* **1961, 34, 1778.**

2 W. J. Holtslander and G. R. Freeman, *Canad. J. Chew.,* **1967, 45, 1661.**

³ See, for example, G. V. Buxton, *Trans. Faraday Soc.*, 1970, 66, 1656, where aqueous systems are discussed.
4 J. M. Warman, K.-D. Asmus, and R. H. Schuler, ''Radiation Chemistry,'' Vol. II, p. 25, A.C.S. Adv. Chem. Ser Hart, **1968.**

*⁶*S. P. Mishra and M. *6.* R. Symons, *J.C.S. Chem. Comm.,* **1972, 510.**

C. Capellos and A. 0. Allen, *J. Phys. Chew.,* **1970, 74, 840.**

7 T. J. Kemp. J. P. Roberts, G. A. Salmon, and G. F. Thompson, *J. Phys. Chem.*, 1968, 72, 1464.
⁸ R. J. Kemp. J. P. Roberts, G. A. Salmon, and G. F. Thompson, *J. Phys. Chem.*, 1968, 72, 1464.

 \times 10⁹M⁻¹s⁻¹). The reported values of the electron affinities of O_2 , SF_6 , and CO_2 are (0.43 ± 0.02) ,⁸ (1.49 ± 0.21) ⁸ and *ca.* 3.8 eV,⁸ respectively. The fact that CO_2^- can transfer its charge to GAL whereas I_2 , CCl₄, and C₂(CN)₄ cannot suggests that the reported value of the electron affinity of $CO₂$ is much too large.

We thank the Science Research Council and the American Chemical Society Petroleum Research Fund for financial support.

(Received, **7th** *June* **1972;** *Corn.* **976.)**