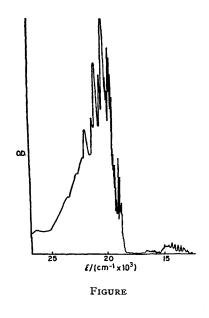
The 'Red Band' in the Spectrum of MnO₃C1

By J. JASINSKI and S. L. HOLT*


(Department of Chemistry, University of Wyoming, Laramie, Wyoming 82070)

Summary The origin of the band in the red region of the absorption spectrum of $[Mn^{v\mathbf{u}}X_4]$ species is clarified.

THE assignment of the absorption spectra of various tetrahedral oxyanions has received considerable attention recently.¹ One particular problem is the origin of the maxima in 14,000—17,000 cm⁻¹ region of the spectra of [MnO₄]⁻, first reported by Teltow.² Based upon arguments involving the electron repulsion splitting of the $t_1^5e^1$ configuration Ballhausen³ proposed that this band was due to both the ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$ and the ${}^{3}T_{1}$, ${}^{3}T_{2} \leftarrow {}^{1}A_{1}$ transitions. More recently Day *et al.*,⁴ Ballhausen *et al.*,⁵ and Johnson *et al.*⁶ have reinvestigated the absorption spectrum of [MnO₄]⁻ in various perchlorate hosts and have assigned the 14,000 cm⁻¹ band to the ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$, symmetry forbidden (in *Td*), transition. We present data which suggests that this assignment is not completely valid.

We have measured the gas-phase absorption of MnO_3Cl . The first two major regions of absorption in this spectrum are shown in the Figure. Both are consistent with what is observed for $[MnO_4]^-$ in KClO₄.

observed for $[MnO_4]$ in KClO₄. The MnO₃Cl molecule has C_{3v} symmetry, owing to the co-ordination of three oxygen atoms and one chlorine, and not through site-imposed symmetry or small Mn-O angular distortions. We should, therefore, expect electronic selection rules to be strongly obeyed. The symmetry-allowed transitions in C_{3v} are $E, A_1 \leftarrow A_1$ while any $A_2 \leftarrow A_1$ transition is symmetry-forbidden. Further, the correlations

of state symmetries between Td and C_{3v} are $T_1 \rightarrow A_2 + E$, $T_2 \rightarrow A_1 + E$, and $A_1 \rightarrow A_1$. As a consequence, each ${}^{1}T_1$ state should give rise to one symmetry-allowed transition, ${}^{1}E_1 \leftarrow {}^{1}A_1$, which would be expected to have an intensity in the range of that observed for other spin- and symmetryallowed transitions. Both regions of absorption below 18,000 cm⁻¹ have intensities considerably below (ca. 1/50for the 14,000 cm⁻¹ manifold and >1/100 for the 16,000 cm⁻¹ manifold) that observed for the band of ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ parentage (18,000–25,000 cm⁻¹) (Figure). We therefore suggest that these data are consistent with an assignment of these maxima as arising from transitions of the type ${}^{3}X \leftarrow {}^{1}A_{1}$.

This work was supported by the National Science Foundation.

(Received, 19th June 1972; Com. 1071.)

¹ See C. A. Kosky, B. R. McGarvey, and S. L. Holt, J. Chem. Phys., 1972, 56, 5904 and references therein.
² J. Teltow, Z. Phys. Chem., 1938, B40, 397.
⁸ C. J. Ballhausen, Theort. Chim. Acta, 1963, 1, 285.
⁴ P. Day, L. DiSipio, and L. Oleari, Chem. Phys. Letters, 1970, 5, 533.
⁵ C. J. Ballhausen, J. P. Dahl, and Ib Trabjerg, Coll. Int. Cen. Nat. de la Recherche Sci., 1970, 191, 69
⁶ L. W. Johnson, E. Hughes, and S. P. McGlynn, J. Chem. Phys., 1971, 55, 4476.