Synthesis of Some 1,3,4,6,9b-Penta-azaphenalenes

By JOHN T. SHAW,* WILLIAM M. WESTLER, and BRUCE D. STEFANKO (Department of Chemistry, Grove City College, Grove City, Pennsylvania, 16127)

Summary Two methods for the preparation of a new nitrogen-bridged [12]annulene heterocyclic ring system, 1,3,4,6,9b-penta-azaphenalene, are reported.

In view of the interest in heterocyclic annulenes¹ we report results on the preparation of fused-s-triazino-heterocyclic ring systems.² We are currently studying the reactions of various substituted α -amino pyridines with N-cyanoimidates,³ but the present discussion is limited to reactions of 2,6-diaminopyridine (I). Thus, refluxing of a concentrated solution of methyl N-cyanoacetimidate (II) (2 mol) with (I) (1 mol.) in glyme for 18 h gave the penta-azaphenalene (III; R¹ = R² = Me) (36.5%), as burgundy crystals, m.p. 275—277°.

Assignment of structure (III; $R^1 = R^2 = Me$) to this compound was based on satisfactory elemental analyses, molecular weight data (*M* 197 by vapour-phase osmometry),

the absence of N-H and C=N bands in its i.r. spectrum, its n.m.r. spectrum, and also by an alternative synthesis from (IV; R = Me) and acetic anhydride. The parent structure (III; R¹ = R² = H) was obtained similarly, as lavender crystals (77%), m.p. 258-260°, from ethyl Ncyanoformimidate (V) and (I).

Use of (IV) with suitable anhydrides affords unsymmetrical derivatives of (III) (see Table).

IABLE				
(II	I)a			
R1 `	´ R²	М.р. °С	Yield ^b	
Mec	н	249 - 251	48	
Med	Pr ⁿ	171 - 172	66	
Mee	\mathbf{Ph}	245 - 246	74	

^a [Anhydride]/[IV] = 10 in refluxing dry glyme for 18 h. ^b Crude yield. ^c From (IV; R=H) and $Ac_{2}O$; crude product purified by column chromatography ($Al_{2}O_{3}$ -CHCl₃). ^d From (IV; R=Me) and butyric anhydride. ^e From (IV; R=Me) and benzoic anhydride.

The amidine (IV; R = H), m.p. 170-171° (glyme), was obtained (45%) by reaction of (I) (1 mol) with (V) (0.9 mol) in glyme for several days at room temperature; similarly, reaction of (I) with (II) gave (IV; R = Me), m.p. 179-181° (37%).

All compounds reported gave correct elemental analyses.

(Received, 16th June 1972; Com. 1049.)

1071

¹ W. W. Paudler, R. A. VanDahm, and Y. N. Park, J. Heterocyclic Chem., 1972, 9, 81; A. B. Holmes and F. Sondheimer, Chem. Comm., 1971, 1434; W. W. Paudler and E. A. Stephan, J. Amer. Chem. Soc., 1970, 92, 4468; D. Farquhar and D. Leaver, Chem. Comm., 1969, 24.

² For the previous paper in this series see: J. T. Shaw, D. M. Taylor, F. J. Corbett, and J. D. Ballentine, J. Heterocyclic Chem., 1972, 9, 125. * K. R. Huffman and F. C. Schaefer, J. Org. Chem., 1963, 28, 1816.