1135

Intersystem Crossing and Internal Conversion from the Lowest Charge-transfer Singlet Excited State of the (2,9-Dimethyl-1,10-phenanthroline)copper(1) Cation

By E. L. WEHRY* and S. SUNDARARAJAN

(Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916)

Summary Sensitized P-type delayed fluorescence is employed to determine the energy of the lowest chargetransfer triplet state and the singlet-triplet intersystem crossing yield in (2,9-dimethyl-1,10-phenanthroline)copper(I); internal conversion to the ground state is the dominant decay mode of the lowest excited singlet state of this chelate.

WHILE the significance of nonradiative intersystem crossing from 'spin-allowed' to 'spin-forbidden' intramolecular charge-transfer (c.t.) excited states of co-ordination compounds has been implied by photoluminescence¹ and photochemical² studies, determination of intersystem-crossing efficiencies and energies of 'spin-forbidden' c.t. states in metal complexes has received virtually no attention. We previously described the redox photochemistry of copper(II) complexes with 2,9-dimethyl-1,10-phenanthroline (dmp),³ and noted that the corresponding copper(I) species were nonluminescent and photochemically inert despite the presence of a low-lying singlet \rightarrow singlet metal \rightarrow ligand c.t. transition in their electronic spectra.⁴ We now report a study of energy-dissipation processes in the lowest c.t. singlet of Cu(dmp)⁺ in ethanol.

The intersystem-crossing yield $(\phi_{\rm ISC})$ of a compound can be determined by measuring the intensity and lifetime of sensitized delayed fluorescence (d.f.) of suitable triplet acceptors.⁵ The measurement is comparative—*i.e.*, the triplet yield of the compound of interest is measured relative to that of a 'standard' of known $\phi_{\rm ISC}$. We have used anthracene ($\phi_{\rm ISC} = 0.70^5$) and naphthacene ($\phi_{\rm ISC} =$

 0.63°) as 'standards' with the triplet acceptors listed in the Table.

		Table	5	
Acceptor	(kJ	E_{T} mol ⁻¹) ^{7,8}	Sensitized d.f.?	$\phi_{\rm ISC}{}^{\rm a}$
Pyrene		201.5	No	
Anthracene		177.7	No	
3,4-Benzpyrene		$175 \cdot 1$	Very weak	< 0.01
9-Methylanthracene		169.7	Weak	0.05 + 0.02
Perylene		150.5	Strong	0.27 + 0.02
Chlorophyll b		138.6	Strong	0.26 + 0.04
Chlorophyll a		$120 \cdot 1$	Strong	0.24 ± 0.02

^a Assuming unit transfer efficiency to acceptor.

Inasmuch as triplet-triplet energy transfer is normally inefficient when $E_{\mathbf{T}}$ for the donor and acceptor are nearly

equal, the data indicate an energy of $165 \pm 5 \text{ kJ} \text{ mol}^{-1}$ for the lowest c.t. triplet of Cu(dmp)+. The energy of the lowest c.t. singlet of Cu(dmp)⁺ is 183 kJ mol⁻¹. In view of the small singlet-triplet split, $\phi_{\rm ISC}$ is surprisingly low [the excellent agreement of the values obtained from sensitized d.f. of perylene and chlorophylls a and b establish that $\phi_{\rm ISC} = 0.26 \pm 0.04$ for Cu(dmp)⁺ in ethanol]. It is therefore evident that internal conversion to the ground state is the major de-excitation mode of the lowest c.t. singlet of Cu(dmp)+. These results provide strong evidence that internal conversion of 'spin-allowed' c.t. states to the ground state can be a dominant process in the photophysical behaviour of co-ordination compounds.

We thank A. W. Varnes for his help and the National Science Foundation for financial support.

(Received, 14th August 1972; Com. 1431.)

¹ R. J. Watts and G. A. Crosby, J. Amer. Chem. Soc., 1972, 94, 2606; F. E. Lytle and D. M. Hercules, ibid., 1969, 91, 253.

^a R. J. Watts and G. A. Crosby, J. Amer. Chem. Soc., 1972, 94, 2000; F. E. Lytie and D. M. Hercuics, 1014., 1909, 91, 255.
^a P. Natarajan and J. F. Endicott, J. Amer. Chem. Soc., 1972, 94, 3635; M. A. Scandola and F. Scandola *ibid.*, 1970, 92, 7278; T. L. Kelly and J. F. Endicott, *ibid.*, 1972, 94, 1797.
^a S. Sundararajan and E. L. Wehry, J. Phys. Chem., 1972, 76, 1528.
⁴ P. Day and N. Sanders, J. Chem. Soc. (A), 1967, 1530.
⁵ C. A. Parker and T. A. Joyce, Trans. Faraday Soc, 1966, 62, 2785.
⁶ B. Stevens and B. E. Algar, Chem. Phys. Letters., 1967, 1, 219.
⁷ P. S. Engle and B. M. Monroe Adv. Phys. Letters., 1971, 8, 245; I. B. Birks 'Photophysics of Aromatic Molecules' Wiley. London.

⁷ P. S. Engle and B. M. Monroe, Adv. Photochem., 1971, 8, 245; J. B. Birks, 'Photophysics of Aromatic Molecules,' Wiley, London, 1970.

⁸C. A. Parker and T. A. Joyce, Photochem. Photobiol., 1967, 6, 395.