1155

Isolation of a Transition-metal Complex of Hexaborane(10); μ -Fe(CO)₄-B₆H₁₀

By A. DAVISON,* D. D. TRAFICANTE, and S. S. WREFORD

(Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Summary The reaction of hexaborane(10) with enneacarbonyldi-iron gives the novel complex μ -Fe(CO)₄-B₆H₁₀, in which the iron centre is shown to be co-ordinated to the unique basal boron-boron bond of B₆H₁₀.

HEXABORANE(10) is thought to possess a two-centre twoelectron bond along a basal edge of its pentagonal pyramidal structure.¹ Protonation of this bond has been suggested to occur in the exchange of bridging hydrogen atoms with D₂O² and DCl;³ indeed, Lipscomb⁴ has predicted B₆H₁₁⁺ to be stable. To the extent that this site is appreciably basic, B₆H₁₀ might be expected to form complexes with transition-metal Lewis acids.

Accordingly, the reaction of $Fe_2(CO)_9$ with $B_6H_{10}^5$ yielded a volatile, yellow, crystalline solid (m.p. 37–38° decomp.). On the basis of i.r., ¹¹B F.t. n.m.r., and mass spectra we have formulated the yellow solid as μ -Fe(CO)₄-B₆H₁₀.

The mass spectrum shows a parent ion multiplet (m/e 243 for ${}^{10}\text{B} \, {}^{11}\text{B}_5 \, {}^{56}\text{Fe} \, {}^{12}\text{C}_4 \, {}^{16}\text{O}_4$) with an isotope pattern which fits

very closely with that calculated for an ion containing a B_6FeC_4 fragment. The presence of four carbonyl groups is demonstrated by four isotope clusters centred at 28, 56, 84, and 112 mass units below the parent ion multiplet. The i.r. spectrum shows four carbonyl stretching frequencies (2078vs, 2018vs, 1986vs, and 1981sh cm⁻¹ in methyl-cyclohexane), which are consistent with both local C_{2v} symmetry, and an Fe(CO)₄ unit. Further, terminal B-H stretching and B-H-B modes are present (2578s, 2555sh, 2495m, 1935sh, and 1850w cm⁻¹ Kel-F mull), but no feature attributable to an Fe-H-B unit is observed.

The ¹¹B F.t. n.m.r. spectrum (28.877 MHz, wide band proton decoupled; C_6H_{12} ; $BF_3 \cdot Et_2O$ external; a positive chemical shift represents a ¹¹B nucleus more shielded than that in the reference) is consistent with the C_s symmetry expected for a 4,5-bridged hexaborane unit. In view of the similar chemical shifts for $B_6H_{10}^6$ the assignments for the apical boron B¹ (δ + 54.4, J_{BH} 183 Hz, 1B) and the unique basal boron B² (δ - 11.4, 1B) are unequivocal. However, an ambiguity exists in assignments for B⁸, B⁶ and B⁴, B⁵ to signals at δ - 0.2 p.p.m., 2B and δ - 4.9 p.p.m., 2B.

The complex may be handled for brief periods in air but is thermally and photolytically unstable. Thermal decomposition yields metallic iron, CO, Fe(CO)5, and hexaborane(10) (as determined by mass spectrometry), which is further evidence for the proposed structure.

We wish to thank Professor W. N. Lipscomb for a gift of

¹F. L. Hirshfeld, J. Griks, R. E. Dickerson, G. L. Lippert, jun., and W. N. Lipscomb, J. Chem. Soc., 1972, 94, 6711.
¹F. L. Hirshfeld, J. Griks, R. E. Dickerson, G. L. Lippert, jun., and W. N. Lipscomb, J. Chem. Phys., 1958, 28, 56.
²J. D. Odom and R. Schaeffer, Inorg. Chem., 1970, 9, 2157.
⁸ H. D. Johnson, II, and S. G. Shore, Topics Current Chem., 1970, 15, 87.
⁴ W. N. Lipscomb, J. Chem. Phys., 1958, 28, 170.
⁵ R. A. Geanangel, H. D. Johnson, II, and S. G. Shore, Inorg. Chem., 1971, 10, 2363.
⁶ T. P. Onak, H. Landesman, R. E. Williams, and I. Shapiro, J. Phys. Chem., 1959, 63, 1533; R. E. Williams, S. G. Gibbins, and I. Shapiro, J. Chem. Phys., 1959, 30, 333; J. B. Leach, T. Onak, J. Spielman, R. R. Rietz, R. Schaeffer, and L. G. Sneddon, Inorg. Chem., 1970, 9, 2170.

Ms. Norma J. Maraschin for assistance with the mass spectrum.

(Received, 14th August 1972; Com. 1420.) Added in proof: After the submission of this manuscript the isolation and characterization of $[B_6H_{11}][BCl_4]$ was reported by H. D. Johnson, II, V. T. Brice, G. L. Brubaker,