Reaction of Chlorosulphonyl Isocyanate with Cyclic Dienes. Evidence for a True Dipole in 2+2 Addition

By J. R. MALPASS* and N. J. TWEDDLE

(Department of Chemistry, The University, Leicester LE1 7RH)

Summary The first reactions of chlorosulphonyl isocyanate with cyclohexadienes involve primary addition to yield N-chlorosulphonyl β -lactams followed by secondary and tertiary dipolar rearrangements; evidence for the intermediacy of a true dipole in β -lactam formation is presented.

The reactions of acyclic dienes with chlorosulphonyl isocyanate (CSI) have recently been the subject of considerable study^{1,2} and have been viewed¹ as $\pi^2_s + \pi^2_a$ cycloadditions yielding *N*-chlorosulphonyl β -lactams which may open to dipolar intermediates thereby providing access to 1,4-addition products. However, the only apparent example of addition to a cyclic diene is provided by the formation of a stable *N*-chlorosulphonyl β -lactam from cyclo-octa-1,3-diene.³

On reaction of CSI with cyclohexa-1,3-diene in CH₂Cl₂ at room temperature, the isocyanate i.r. band was completely replaced within 5 min by a peak at 1809 cm⁻¹. Cooling of the reaction mixture and treatment with benzenethiol-pyridine at low temperature followed by work-up and chromatography on neutral alumina gave β -lactam (2b)† (70%), m.p. 70.5–71.5°, ν_{max} (CH₂Cl₂) 3410 and 1755 cm⁻¹.

When a similar mixture was left at 25° for 30 h, the 1809 cm^{-1} peak was completely replaced by absorption at 1588 cm^{-1} . Evaporation gave a quantitative yield of (3),† m.p. $83-84^{\circ}$ (decomp.).

Alternatively, if the reaction was performed in CHCl₃ and the mixture heated under reflux, (2a) and (3) underwent consecutive heterolytic cleavage and after 17 h the only CO absorption was at 1750 cm⁻¹. After filtration and evaporation, crude (4a) (91%) remained which was converted by hydrolysis at pH 7 into lactam (4b),† m.p. 124·5—125°, ν_{max} (CH₂Cl₂) 3430 and 1690 cm⁻¹ (33% after chromatography and sublimation).

When cyclo-octa-1,3,5-triene was heated to reflux with CSI in CCl₄, the products were (8a) and (10a) implicating bicyclo[4,2,0]octa-2,4-diene, and so samples containing up to 60% of bicyclo-octadiene and 40% of cyclo-octatriene were prepared.⁴

Reaction of bicyclo-octadiene with CSI in CCl₄ at room temperature, was monitored by i.r. spectroscopy and gave, within 1 h, (**6a**) ν_{max} (CCl₄) 1815 cm⁻¹ [isolated in 41% yield as (**6b**),†‡ m.p. 118—119.5°, ν_{max} (CH₂Cl₂) 3410 and 1756 cm⁻¹, after low-temperature work-up with benzenethiolpyridine], and (7),† ν_{max} (CCl₄) 1595 cm⁻¹, isolated pure (37%) by cooling the reaction mixture at -20° C overnight.

† Proposed structures are fully substantiated by n.m.r. spectroscopy including double-resonance studies, mass spectra, and elemental analysis where stability allowed.

[‡] The stereochemistry was confirmed by observation of the signal from H^a as a doublet at δ 3·19 p.p.m. ($J_{a,b}$ 5 Hz); $J_{a,c}$ is zero since the dihedral angle is close to 90°.

If the reaction mixture was left at room temperature, absorption slowly appeared at 1612 and 1750 cm⁻¹ corresponding respectively to (10a) and (8a) which were the only products after 5 days. Fractional crystallisation yielded 25% of (10a),† m.p. 133–135°, ν_{max} (CH₂Cl₂) 1612 cm⁻¹. The mother liquors contained (8a) which was hydrolysed at pH 7 to yield, after recrystallisation from acetone, 30% of (8b),† m.p. 172–173°, ν_{max} (CH₂Cl₂) 3440 and 1680 cm⁻¹.

The structure of the unusual imino-lactone (10a) was confirmed by acid hydrolysis to lactone (10b), v_{max} (film) 1780 cm⁻¹ (50%). The aqueous remains from the hydrolysis provided the hydroxy-acid (11a) which was converted with diazomethane into the ester (11b). Sarett oxidation gave keto-ester (12), $\dagger v_{max}$ (CCl₄) 1763 and 1739 cm⁻¹ (75%). The observation of a strained 5-ring carbonyl group [as opposed to an $\alpha\beta$ -unsaturated carbonyl group in (13)] confirmed the mode of attachment of the lactone fragment.

That N-chlorosulphonyl β -lactam (**6a**) is accessible via the dipolar (**5**) was shown by i.r. spectroscopy of a solution of the unstable imino-lactone (**7**) in CH₂Cl₂. Within 1 h the apppearance of a peak at 1813 cm⁻¹ demonstrated the production of a small amount of (**6a**) whose concentration remained constant until (**7**) had been completely converted into (**8a**) and (**10a**) when it fell to zero. The resultant ratio of (**8a**) to (**10a**) was **45**:55 (n.m.r. spectroscopy). In nitromethane, the conversion occurred more rapidly and the proportion of (**10a**) increased to 63%.

The reaction of CSI with cyclohexa-1,3-diene thus provides a unique example of 1,2-addition followed by formation of the product of 1,4-cyclisation through oxygen and finally, 1,4cyclisation through nitrogen where, under appropriate conditions, each isomer may be isolated in high yield. Bicyclo[4,2,0]octa-2,4-diene exhibits parallel behaviour with the incursion of an additional final product (10a) derived from a 1,2-shift $(5) \rightarrow (9)$ followed by cyclisation through oxygen.

We cannot eliminate the possibility of a concerted or near concerted cycloaddition^{1,5} as a first step but, in the light of the present results, 1,4-dipoles such as (1) and (5) still merit consideration as primary intermediates giving 1,2-addition products under kinetic control and 1,4-adducts under thermodynamic control.

We thank the S.R.C. for a Research Studentship (to N.J.T.).

(Received, 30th August 1972; Com. 1502.)

- ¹ E. J. Moriconi and W. C. Meyer, J. Org. Chem., 1971, 36, 2841 and references cited therein.
- ² R. J. P. Barends, W. N. Speckamp and H. O. Huisman, Tetrahedron Letters, 1970, 5301.
- ³ T. Durst and M. J. O'Sullivan, J. Org. Chem., 1970, 35, 2043.

⁴ A. C. Cope and F. A. Hochstein, J. Amer. Chem. Soc., 1950, 72, 2515. The triene took no part in the reaction provided a nonpolar solvent was used (e.g. CCl_4); indeed isolation of the pure triene may be conveniently achieved after removal of the bicyclic form from the tautomeric mixture with CSI.

⁵ The addition of CSI to diphenylmethylenecyclopropane has recently been viewed as concerted; T. J. Barton and R. J. Rogido, *Tetrahedron Letters*, 1972, 3901, as has the addition to 2-cyclopropylpropene; T. J. Barton and R. J. Rogido, *J.C.S. Chem. Comm.*, 1972, 878. Our own unpublished results from a series of 1-substituted-1-cyclopropylethylenes show a considerable dependence of the rate of β -lactam formation on the ability of the 1-substituent to stabilise a positive charge at C-1.