Ziegler-type Systems as Catalysts for Hydrosilylation: Linear Dimerisation with Terminal Acetylenes

By M. F. LAPPERT* and S. TAKAHASHI

(School of Molecular Sciences, University of Sussex, Brighton BN1 9Q1)

Summary Ziegler-type systems, $M(acac)_n$ -AlEt₃ (M = Ni, Co, Fe) catalyse the hydrosilylation of 1,3-dienes; with RC: CH, hydrosilylation is accompanied by linear dimerisation to give CH₂: CR·CR: CHSiX₃ as the major product.

HYDROSILYLATION, the addition of X₃Si-H to unsaturated hydrocarbons, is of importance in the silicone industry and the preferred catalyst is H₂PtCl₆, Speier's catalyst.¹ We now report on the use of two-component Ziegler catalysts in hydrosilylation. With terminal acetylenes and 1.3dienes especially there are distinctive features which may prove to be of value.

The reaction with terminal acetylenes, such as pent-1-yne, to give mainly (I) but also (II) (see selected results in Table 2) has no precedent, 1,1-adducts having formerly been found.⁵ A typical procedure was to reduce Ni(acac)₂ (0.5 mmol) in n-C₈H₇C : CH (90 mmol) with AlEt₈ (1.0 mmol), and then to add (EtO)₃SiH (45 mmol) at 0°; the reaction was exothermic, and distillation gave a colourless liquid, b.p. 96-97°/1 mmHg, from which pure specimens of isomers (I) and (II) were obtained by preparative g.l.c. Evidence for structures rests on analyses, mass spectra (P^+) , i.r., and ¹H n.m.r. (including decoupling experiments) spectroscopy, and a Diels-Alder reaction $[(I) \rightarrow (III)]$, as well as on similar data on the major product (I) from $n-C_{3}H_{7}$ -

Viold (9/1h

Table 1.	Hydrosil	vlation o	f dienes	at 20°C.

$M(acac)_{n}^{a}$	Dienea	Silane ^a	Time (t/h)	of $1,1$ -adduct
$Ni(acac)_2$	isoprene	HSi(OEt) ₃ ; HSiEt ₃	2	94°; 97°
$Co(acac)_3$; $Fe(acac)_3$	isoprene	HSi(OEt) ₃ ; HSiEt ₃	6;2	44; 41
$Ni(acac)_2$	pentadiene	HSi(OEt) ₃ ; HSiEt ₃ ;	3	96;ª 99;c 96c
		HSiMeCl ₂		

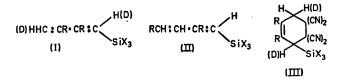

^a M(acac)_n, 0·1 mmol; AlEt₃, 0·2 mmol (Ni) or 0·3 mmol (Fe or Co); diene, 15 mmol; and HSi(OEt)₃, 5·4 mmol, or HSiEt₃, 6·3 mmol, or HSiMeCl2, 9.6 mmol. b Based on silane. c Containing a small amount of isomer(s). Containing about 30% of MeCH: CH--CHMeSi(OEt)_a.

TABLE 2 Hudrosilulation of pent-1-une at 20 °C

			INDER 2. II)	aroshiyianon oj pen	i-1-yne ui 2	0 0.		
Catalyst ^a		Molar ratio ^b	Pentyne (mmol)	Silane	Silane (mmol)	Time (t/h)	Yield ^e (%)	Isomer ratio (I) : (II)
Ni(acac) ₂ -AlEt ₃ ^d		2	15	HSi(OEt).	5.4	3	89	81:19
$Ni(acac)_2 - LiAlH_4^{e}$.		4	15	HSiÈt,	$6 \cdot 3$	6	87	74:26
NiĈl ₂ -AlĒt ₃ d	••	2	15	HSi(OĔt)3	5.4	6	80	85:15
a Ni2+ 0.1 mmol	h Mole	motio of mo	duatont N:2+	0 Deced an eilene	d N 1		1	

^a Ni²⁺, 0·1 mmol. ^b Molar ratio of reductant: Ni²⁺. ^c Based on silane. ^d No solvent. ^e THF solvent.

The systems $Ni(acac)_2$ or $Co(acac)_3$ with $AlEt_3$ showed only low activity towards α -olefins, such as oct-1-ene, because of competing olefin isomerisation and reduction to

metal. For penta-1,3-diene, the product of 1,4-addition predominates (e.g., see Table 1), whereas certain Ni^o and Pd^o catalysts give coupled adducts with linear 1,3-dienes, e.g., $(C_4H_6)_2HSiX_3$ from $C_4H_6^2$ Ni $(acac)_2-AlEt_3$ is the reagent of choice in terms of both activity and selectivity and is more active than Speier's catalyst.³ Penta-1,3diene gave EtCH: CHCH2SiX3 with the Ziegler system, whereas the Pt catalyst affords MeCH: CH(Me)SiX₂.4 Isoprene yields MeCH: C(Me)CH₂SiX₂ in each case.

C CD. When X = EtO and $R = Pr^n$, (III), m.p. 95–96°, was obtained (60%). The hydrosilylation products both from 1,3-dienes and terminal acetylenes are probably obtained stereoselectively, neither g.l.c. or ¹H n.m.r. suggesting that there is a mixture of isomers; however, we are unable at present to assign stereochemistry.

The nickel catalyst was inactive for internal acetylenes such as hex-2-yne or oct-4-yne. Fe^{III} and Co^{III} acetylacetonates gave polymeric products from pent-1-yne, and CrIII and Mn^{Π} analogues were ineffective for 1,3-dienes as well as acetylenes.

Low oxidation-state nickel compounds are usually oligoor poly-merisation catalysts for terminal acetylenes.6 However, hydrosilylation using a Ziegler system may prove to be a forerunner for other catalytic addition reactions of terminal acetylenes to yield coupled products.

We thank the S.R.C. for their support.

(Received, 21st August 1972; Com. 1460.)

- ² C. C. S. Cundy, B. M. Kingston, and M. F. Lappert, Auv. organometallics in Chem., 1512, 11, 200. ² E.g., S. Takahashi, T. Shibano, H. Kojima, and N. Hagihara, Organometallics in Chem. Synthesis, 1970/1972, 1, 193. ³ I. Shihara, W. F. Hoskys, and H. W. Post, J. Org. Chem., 1961, 26, 4000. ⁴ V. F. Mironov and V. V. Nepomnina, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1960, 1419. ⁵ C. C. Externa and R. W. Post, in Compounds of the Group IV Elements' ed. A. G. McDiarmid
- ⁵ Cf. C. Eaborn and R. W. Bott, in 'Organometallic Compounds of the Group IV Elements,' ed. A. G. McDiarmid, vol. 1, part 1, 1968, p. 269.
 ⁶ Cf. C. W. Bird, 'Transition Metal Intermediates in Organic Synthesis,' Academic Press, New York, 1967, p. 1.

¹ Cf. C. S. Cundy, B. M. Kingston, and M. F. Lappert, Adv. Organometallic Chem., 1972, 11, 253.