¹⁹F Nuclear Magnetic Resonance Spectra of Fluoro-complexes of Platinum and Palladium

By K. R. DIXON* and J. J. McFARLAND

(Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada)

Summary ¹⁹F N.m.r. spectra of $[MF(PR_3)_3][BF_4]$, M = Pd or Pt, unequivocally confirm the assigned structures and comparison of coupling parameters with those in iso-structural hydrido-complexes suggests a very small s character for the platinum-fluorine bond.

THERE is much current interest¹⁻³ in the study of fluorocomplexes of platinum metals which also have tertiary phosphines as ligands. However, in no case has any $[MF(PR_3)_3][BF_4]$. These spectra unequivocally confirm the presence of square planar cations with co-ordinated fluorine and also permit comparison of coupling constants with those observed for isostructural hydrido-complexes, $[MH(PR_3)_3]^+$. Such comparisons are likely to yield valuable information for the study of bonding and *trans*effect phenomena in platinum metal complexes and also for the theory of nuclear spin-spin coupling.

The $[MF(PR_3)_3][BF_4]$ complexes[†] are synthesized by reaction of silver fluoride with the corresponding chloro-

TABLE. Nuclear magnetic resonance parameters for platinum metal complexes

Complex			Coupling constants (in Hz) ⁸ ³¹ P _{trans} -X ³¹ P _{cis} -X ¹⁹⁵ Pt-X			Chemical shift (p.p.m. from CFCl ₃ external reference)
[PdF(PEt ₃) ₃][BF ₄]			160	30		+253b
$\left[\Gamma \cup \Gamma \left(\Gamma \cup \iota_{3} \right)_{3} \right] \left[\bigcup \Gamma_{4} \right] . $	•• •	• ••	140	32	250	
	•• •	• ••				+252°
$[PtF(PEt_s)_2(PPh_s)][BF_4]$		• ••	155	30	200	+258d
$[PtF(PPh_{3})_{3}][BF_{4}]$			144	38	see text	+230b
			157	15	788	·
[PtH(PPh ₃) ₃][(CF ₃ COO) ₂ H]	ť.		160	17	774	
				·		

 $^{a}X = ^{19}F$ or ¹H directly bonded to the metal. ^b Nitromethane solution. ^c Acetone solution. ^d Dichloromethane solution. ^e Ref. 6. ^f Ref. 4.

direct spectroscopic or structural evidence for the presence of a metal-fluorine bond been obtained and in particular no ¹⁹F n.m.r. spectra have been observed. We report ¹⁹F spectra for platinum and palladium complexes of the type, complexes and their ¹⁹F n.m.r. spectra are easily analysed by first order techniques to yield the parameters given in the Table. The cation spectra consist of the expected doublet from coupling with the single *trans*-phosphorus atom with

† Molar conductance measurements in nitromethane give values typical of 1:1 electrolytes and satisfactory microanalyses have been obtained for all complexes except $[PdF(PEt_{3/3}][BF_4]$ which has only been studied in solution. $\nu(Pt-F) = 460 \text{ cm}^{-1}$ in $[PtF-(PEt_{3/3})][BF_4]$.

further splitting into triplets from coupling with two cisphosphorus atoms. For [PtF(PEt₃)₃]+ and [PtF(PEt₃)₂-(PPh_s)]⁺ sideband spectra due to coupling with ¹⁹⁵Pt (33% abundant) are clearly observed with 1/4 the intensity of the centre bands but for $[PtF(PPh_3)_3]^+$ the sidebands are weak and asymmetric. The origin of this effect is under investigation but we note that a ¹H resonance showing different sideband and centreband spectra has been observed previously⁴ for $[PtH(PPh_3)_3]^+$. In any case, the presence of the two fluorine-phosphorus couplings is clear evidence that the fluorine in [PtF(PPh₃)₃]⁺ is co-ordinated to platinum and that the structure is similar to the other cations reported here. It is also of interest that the reaction of $[Pt(PPh_3)_4]$ with hydrogen fluoride gives a product whose ¹⁹F n.m.r. spectrum shows the presence of the [PtF(PPh₃)₃]⁺ cation. This product was originally formulated⁵ as $[PtF_2(PPh_3)_2]$ but it has recently been suggested² that the correct formula is $[PtF(PPh_3)_3][HF_2]$.

The magnitudes of the coupling constants for these fluoro-complexes may be compared with reported^{4,6} values for $[PtH(PPh_3)_3]^+$ and $[PtH(PEt_3)_3]^+$ (see Table). The phosphorus-fluorine couplings are of similar magnitudes

but an unexpected feature is the relatively small platinumfluorine coupling. Small couplings between fluorine and transition metals have been observed previously for MoF₆ (44 Hz), WF₆ (48 Hz), and NbF₆⁻ (334 Hz) and Reeves and co-authors have interpreted these in terms of the Pople and Santry theory of spin-spin coupling by suggesting that small values of $|\psi_{ns}(0)|^2$ for the metals are the dominant factors.⁷ However, J_{Pt-F} in PtF_6^{2-} is 2080 Hz⁸ and $J_{\text{Pt-H}}$ in $[\text{PtH}(\text{PEt}_3)_3]^+$ is 788 Hz.⁶ The $|\psi_{\text{Pt}(68)}(0)|^2$ terms will have similar values in these complexes and in the $[PtF(PR_3)_3]^+$ cations and consequently the low platinumfluorine couplings in the cations must be due to another factor; presumably a very small s character for the Pt-F bond. If this is the case it should be reflected in increased s character in the platinum-phosphorus bonds with correspondingly large platinum-phosphorus coupling constants. Further studies are in progress to test this hypothesis.

We thank the National Research Council of Canada for a research grant and the University of Victoria for a Graduate Scholarship.

(Received, 16th October 1972; Com. 1764.)

- ¹ R. D. W. Kemmitt, R. D. Peacock, and J. Stocks, Chem. Comm., 1969, 554.

- ² R. D. W. Kemmitt, R. D. Peacock, and J. Stocks, J. Chem. Soc., (A), 1971, 846.
 ³ L. Vaska and J. Peone, jun., Chem. Comm., 1971, 418.
 ⁴ K. Thomas, J. T. Dumler, B. W. Renoe, C. J. Nyman, and D. M. Roundhill, Inorg. Chem., 1972, 11, 1795.
 ⁵ J. McAvoy, K. C. Moss, and D. W. A. Sharp, J. Chem. Soc., 1965, 1376.
 ⁶ H. C. Clark and K. R. Dixon, J. Amer. Chem. Soc., 1969, 91, 596.
 ⁷ L. Romer, P. Warne, M. R. C. Mart, C. M. Commun. 2009, 46, 1290, and references therein.

- ⁷ J. Feeney, R. Haque, L. W. Reeves, and C. P. Yue, *Canad. J. Chem.*, 1968, 46, 1389, and references therein.
 ⁸ N. A. Matwiyoff, L. B. Asprey, W. E. Wageman, M. J. Reisfeld, and E. Fukushima, *Inorg. Chem.*, 1969, 8, 750.