Effect of Solvent Structure on the Transport of Water in Methanol-Water-Alkali-metal Halide Systems

By D. FEAKINS,* K. H. KHOO, J. P. LORIMER, and P. J. VOICE *(Department of Chemistry, University College, Belfeld, Dublin* **4)**

Summary In the methanol-water system, the Washburn number of water, $w_{\mathbf{w}}$, in alkali-metal halide solutions is inflected with respect to solvent composition ; particularly pronounced maxima are observed for sodium iodide at *ca.* 15 and **40% (w/w)** methanol.

For binary aqueous mixtures $w_{\mathbf{w}}$ is the number of moles of water transported per Faraday towards the cathode in an electrolysis, relative to the cosolvent. An e.m.f. method gives $w_{\mathbf{w}}$ at infinite dilution of the electrolyte.¹

Equation (1) relates $w_{\mathbf{w}}$ to the transport numbers *t* of, and numbers of moles of water *n* transported by the ions.
 $w_{\mathbf{w}} = n_+ t_+ - n_- t_-$ (1)

$$
w_{\mathbf{w}} = n_+ t_+ - n_- t_- \tag{1}
$$

Plots of w_{w} against solvent composition for the alkalimetal chlorides in the range $0-30\%$ (w/w) methanol are little differentiated (Figure, a). The curves for lithium, sodium, and potassium chlorides do, however, show maxima at *ca.* 15% methanol (w/w); there is no extremum for rubidium chloride and a shallow minimum for caesium chloride.

In contrast, a remarkable and progressive enhancement of the peak at 15% methanol is observed when for the sodium salts we change the anion from chloride through bromide to iodide (Figure, b). Further, in the region **35-45%** (w/w) methanol there is a second peak for sodium iodide, a less pronounced maximum for sodium chloride, and evidence of at least weak inflections for sodium bromide. anions by water (i) is reduced by the averaging **of** the

We have found that $t_$ for any of the sodium halides changes very little, and is uninflected, over the range **0-60%** (w/w) methanol, and, at a particular solvent composition varies little from halide to halide.

FIGURE. G, NaI. **A, LiCl; R,** NaCl; C, KC1; D, RbCl; E, CsCl; F, NaBr;

of drawing the graphs, to each of the curves B, F, *and G. In* (b) *the fioint at* **25** % *methanol is common, within the accuracy*

The effects observed have therefore to be explained in terms of *n,* whose value is probably dominated by nearneighbour interactions of the ion.

Although methanol is expected to be the more 'basic' and less 'acidic' of the two components,² any tendency to preferential primary solvation of cations by methanol or **of** 'acidic' and 'basic' properties over both solvent components³ and (ii) must be over-ridden by some other factor if the positive Washburn numbers found here are to result. For ions of either sign this is probably a steric preference for water over methanol.

On steric and energetic grounds *n-* should fall from chloride to iodide, and, with a common cation, $w_{\mathbf{w}}$ should increase. **A** clear differentiation in this sense is only observed at **15%** methanol (Figure, b). Here the structure of the solvent is probably maximal,³ and molecules of either kind are least readily yielded to the centrosymmetric arrangement around the ion. Thus at this solvent composition n_{-} is a minimum, and $w_{\mathbf{w}}$ a maximum; the most pronounced maximum is for the ion least able to create structure, namely iodide.

The development of a maximum in $w_{\mathbf{w}}$ as anionic size increases and $n_$ falls is paralleled by extinction of the maximum and development of a minimum as cationic size increases and *n+* falls.

As the concentration of methanol is increased past the point of maximum solvent structure, the disordered region around an ion should gradually disappear and *n* increase accordingly. The extrema in $w_{\mathbf{w}}$ at the higher methanol concentrations could arise from different rates of increase in n_+ and n_- over particular ranges of solvent composition.

(Received, 23rd October **1972;** *Corn.* **1795.)**

D. Feakins, *J. Chem. SOL,* **1961,** *5308;* D. Feakins and J. P. Lorimer, *Chem. Comm.,* **1971, 646.**

- D. Feakins and P. Watson, *J. Chem. SOC.,* **1963, 4734. a** F. Franks and D. J. G. Ives, *Quart. Rev.,* **1966, 20, 1.**
-