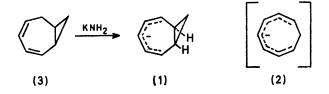
Photochemical Behaviour of the Bicyclo[5,1,0]octadienyl Anion

By H. KLOOSTERZIEL* and MRS. G. M. GORTER-LA ROY

(Gorlaeus Laboratoria, Postbox 75, The University, Leiden, The Netherlands)

Summary Irradiation of solutions of the bicyclo[5,1,0]octadienyl anion yields the cyclo-octatetraene dianion.


THE electrocyclic interconversion of the two $C_8H_9^-$ species bicyclo[5,1,0]octadienyl anion (1) and (all *cis*) cyclo-octatrienyl anion (2) is—as a disrotatory process—thermally forbidden by the Woodward–Hoffmann rules.¹ The thermal isomerisation of (1) takes a different course.² The allowed photochemical interconversion of (1) and (2) cannot be studied starting from (2). Attempts to prepare (2) are thwarted by its instability to disproportionation into cyclo-octatriene and the cyclo-octatetraene dianion,² see reaction (1). We have studied the behaviour of solutions

$$(2) + (2) \to C_8 H_{10} + C_8 H_8^{2-}$$
(1)

of (1) in liquid ammonia obtained by reaction (2), upon

$$(3) + \text{KNH}_2 \rightarrow (1) \tag{2}$$

irradiation with a Philips HP500 mercury arc at -70° . ¹H N.m.r. spectra (100 MHz) of the solutions revealed a rapid and complete disappearance of the signals of (1). The features that appear depend upon the molar ratio KNH₂: (3) used in the preparation of solutions of (1). (i) With a ratio of 1:1 the signals of (3) as well as a strong singlet at $\delta 5.64$ are observed. (ii) With a ratio of 2:1 the

singlet is the only new signal. The ratio dependence and the value² of δ prove that the cyclo-octatetraene dianion is formed.[†]

This observation agrees with an initial photochemical isomerisation of (1) to (2), followed by one or more proton transfers such as: (1) + (2) \rightarrow (3) + C₈H₈²⁻, reactions (1) and (2), and KNH₂ + (2) \rightarrow C₈H₈²⁻.

Though other pathways can be envisaged for the initial reaction $(1) \rightarrow (2)$, we consider the photochemically allowed disrotatory electrocyclic ring opening of (1) as the most likely.

(Received, 31st December 1971; Com. 2212.)

[†] Addition (case ii) of NH₄Cl and work-up (evaporation of NH₃; addition of CCl₄) gave (g.l.c.) cyclo-octa-1,3,5- and -1,3,6-triene (mass: $106 = C_8H_{10}$; n.m.r.: correct shifts and intensities), which confirms the conclusion.

¹ R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie, Weinheim, 1970.

² H. Kloosterziel and E. Zwanenburg, Rec. Trav. chim., 1969, 88, 1373.