Evidence for a One-electron Intermediate in the Anodic Oxidation of Hydroquinone in Acetonitrile

By B. R. Eggins

(Department of Chemistry, The City University, St. John Street, London E.C.1)

Summary The oxidation of hydroquinone at rotating-disc electrodes clearly indicates a one-electron, not a twoelectron, process when the diffusion coefficients of the species compared are taken into account.

In our previous work we have presented cyclic voltammetric evidence for two-electron oxidation of hydroquinone(QH_2) in acetonitrile at long times, but involving a one-electron intermediate detectable at short times.1 Parker and Eberson² dispute the existence of the one-electron intermediate on the evidence of a rotating-disc electrode (RDE) They² measured the function $i_{\rm L}/\omega^{\dagger}C$ (where $i_{\rm L}$ is study. the limiting current in μA , ω is the angular rotation of the electron in radians/s, and C is the concentration) which for their electrode (area 0.2 cm²) gave values between 28 and 30. These values are compared with $i_{\rm L}/\omega^{\dagger}C$ values of 12.2 and 15.5 for 9,10-diphenylanthracene and thianthrene, respectively, both of which are known to undergo oneelectron oxidations to give cation radicals.

However, the complete Levich equation⁴ is $i_{\rm L}/\omega^{\dagger}C$ $= 0.62 nFAD^{\frac{1}{2}} v^{-\frac{1}{2}}$ where A is the area of the electrode in cm^2 , D is the diffusion coefficient of the electro-active species in $cm^2 s^{-1}$, and v is the kinematic viscosity of the solution (viscosity \div density) in cm² s⁻¹. If one substitutes the appropriate values for QH₂ in acetonitrile into this equation,

 $i_{\rm L}/\omega^{\rm t}C = 30;$ $A = 0.2 \,{\rm cm}^{2},^{3}$ $\nu = 0.00360 {\rm poise}$ using $\div 0.7828 \text{ gm/cm}^3$; $^5 D = 3.16 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$, 1c one obtains a value for n of 1.02.

The explanation for the discrepancy between this value and that indicated by Parker and Eberson² lies in their neglect of differences in D values, which are inversely related to the sizes of the molecules. We have determined the D values for 9,10-diphenvlanthracene (8.18 + 0.04) \times 10⁻⁶ cm² s⁻¹) and for thianthrene (1.31 ± 0.01 × 10⁻⁵ $cm^2 s^{-1}$) by chronoamperometry⁶ at a stationary platinum electrode $(A = 0.351 \text{ cm}^2)$ at 1.3 and 1.4 V vs. aqueous S.C.E., respectively.

As a check we oxidised QH_2 and 9,10-diphenylanthracene at a Beckman RDE ($A = 0.331 \text{ cm}^2$) in acetonitrile containing 0.1 M-tetra-n-butylammonium perchlorate at a range of rotation rates. The results obtained for $i_{\rm L}/\omega^{\dagger}CA$ agreed with those of Parker and Eberson.2,3

Using these results² plus the *D* values obtained, the ratios of $i_{\rm L}/\omega^{\dagger}CD^{\dagger}$ for QH₂ to those for 9,10-diphenylanthracene and thianthrene are found to be 0.99(8):1 and 1.08:1, respectively. Thus the oxidation process observed is clearly one-electron. This gives further support to our suggested mechanism.¹ This work was supported by a grant from the S.R.C.

(Received, 15th February 1972; Com. 240.)

¹ (a) B. R. Eggins and J. Q. Chambers, Chem. Comm., 1969, 232; (b) B. R. Eggins, *ibid.*, p. 1267; (c) B. R. Eggins and J. Q. Chambers, J. Electrochem. Soc., 1970, 117, 186. ² V. D. Parker and L. Eberson, Chem. Comm., 1970, 1289.

³ L. Eberson, personal communication.
⁴ V. G. Levich, "Physicochemical Hydrodynamics", Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
⁵ "Handbook of Chemistry and Physics", Chemical Rubber Publishing Co., Cleveland, Ohio, 1951.

⁶ R. N. Adams, "Electrochemistry at Solid Electrodes", Marcel Dekker, New York, 1969.