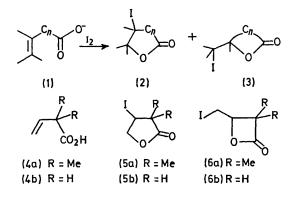
β-Lactones as Kinetic Products in the Iodolactonization Reaction

By WILLIAM E. BARNETT* and WON H. SOHN

(Chemistry Department, University of Georgia, Athens, Georgia 30601)


Summary β -Lactones are the kinetic products from the iodolactonization of certain $\beta\gamma$ -unsaturated acids. These γ -iodo- β -lactones are readily isomerized to more stable β -iodo- γ -lactones.

UNSATURATED sodium carboxylate salts react with iodine to form lactones when the site of unsaturation is in a sterically accessible $\beta\gamma$ -, $\gamma\delta$ -, or $\delta\epsilon$ -position, (1) \rightarrow (2) and/or (3). Under a set of standard conditions for this reaction, the iodolactonization reaction, δ -lactones are formed from $\delta\epsilon$ -unsaturated acids and γ -lactones are formed from $\beta\gamma$ or $\gamma\delta$ -unsaturated acids.² We have recently described a new method of iodolactonization which produces β -lactones from a variety of $\beta\gamma$ -unsaturated acids.³ In a systematic effort to compare this new method with the standard method,² we have discovered that the γ -iodo- β -lactones formed in the new procedure are often the initial products formed in the standard procedure.

The standard iodolactonization procedure as applied to 2,2-dimethylbut-3-enoic acid (4a) produces the expected γ -lactone (5a), whereas the new procedure³ gives the β lactone (6a). If the standard reaction mixture is modified by substituting pure (6a) for (4a), the characteristic β lactone absorption at 1827 cm⁻¹ is gradually replaced by γ -lactone absorption below 1800 cm⁻¹ over the standard reaction period of 24 h. During this time, the β -lactone (6a) is rearranging to the γ -lactone (5a).

This result obviously implied, but certainly did not prove, that β -lactones are initial products in the standard iodolactonization method. In order to detect a possible β lactone intermediate the standard procedure was interrupted at an early stage. After a reaction time of 15 min, (4a) gave the β -lactone (6a) as the major product. Fortunately, the rate of β -lactone formation is much faster than the rate of rearrangement to the γ -isomer so that the β -lactone is easily detected as the kinetic product in the standard procedure.

The standard method gives a poor yield of γ -iodolactone from (4b).^{2,3} However, when the standard conditions are modified merely by shortening the reaction time, both γ and β -lactones, (5b) and (6b), can be detected by characteristic

i.r. bands at 1770 and 1833 cm⁻¹. Once again the β -lactone is the kinetic product as shown by a preponderance of the 1833 cm^{-1} carbonyl band after a reaction time of 2 min. Rearrangement of (6b) to (5b) is suggested by a diminishing intensity of this band at the expense of the 1770 cm^{-1} band, the two bands becoming approximately equal in intensity after 15 min. After 24 h the β -lactone band is considerably diminished.[†]

Even though the γ -iodo- β -lactones are formed as kinetic products in the standard method, the new procedure³ is still the method of choice for preparing them.[†]

We acknowledge support from the Petroleum Research Fund administered by the American Chemical Society.

(Received, 15th February 1972; Com. 238.)

† Yield of neutral material (5b + 6b) from iodolactonization of (4b)/reaction time = $6\cdot3\%/30$ sec; $7\cdot0\%/2$ min; $7\cdot6\%/15$ min; <0.7%/24 h. See ref. 3 for the preparation of pure (6b).

- ¹ H. O. House, 'Modern Synthetic Reactions,' Benjamin, New York, 1965, p. 143ff.
- ² E. E. Van Tamelen and M. Shamma, J. Amer. Chem. Soc., 1954, **76**, 2315. ³ W. E. Barnett and W. H. Sohn, *Tetrahedron Letters*, in the press.
- W. E. Barnett and J. C. McKenna, Chem. Comm., 1971, 551; W. E. Barnett and J. C. McKenna, Tetrahedron Letters, 1971, 2595.