J.C.S. CHEM. COMM., 1972

Trifluoromethyliodine(v) Tetrafluoride

By O. R. Chambers, G. Oates, and J. M. Winfield* (Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Trifluoromethyliodine(v) tetrafluoride has been prepared by the oxidation of trifluoromethyl iodide at -78° with chlorine trifluoride.

ALTHOUGH the oxidation of trifluoromethyl iodide by fluorine¹ or by chlorine trifluoride² has been described, the

product, formulated as $\mathrm{CF_3IF_2}$, readily decomposes and is not well characterised. We now report the preparation of trifluoromethyliodine(v) tetrafluoride from $\mathrm{CF_3I}$ and $\mathrm{ClF_3}$ (3:4 mole ratio), a route that has been used to prepare higher members of the series $\mathrm{C_nF_{2n+1}IF_4}$. The reaction is conveniently carried out at -78° in a monel metal, Kel-F

vacuum system. Providing the addition of CIF3 is slow and the CF₃I is diluted by perfluorohexane (1:3), little C-I bond cleavage occurs and the yield of CF₃IF₄ is essentially quantitative. Pentafluorophenyliodine(v) tetrafluoride† is prepared similarly.

CF₃IF₄ is a white, moisture-sensitive solid, which is readily volatile at 20° and soluble in CCl₃F. It is characterised by its n.m.r. spectrum, first-order A_3X_4 , δ_A -56·1, $\delta_{\rm x}=32\cdot4$ p.p.m., $J_{\rm Ax}$ 18 Hz (chemical shifts to high-field of CCl₃F). The spectroscopic equivalence of the IF₄ group indicates either that the CF₃ group is trans to the lone pair, or that a fast intramolecular exchange process occurs. The mass spectrum of CF₃IF₄ consists of peaks assigned to CF_3IF^+ (1), CF_3I^+ (34), IF_4^+ (16), IF_3^+ (13), IF_2^+ (70), IF^+ (21), I^+ (47), and CF_3^+ (100). For $C_6F_5IF_4$ a molecular-ion peak is observed.

Decomposition of CF₃IF₄ at 20° is detectable after one hour, the products being CF₄, CF₃I, IF₅, and I₂. The stability of RIF4 compounds with respect to decomposition increases in the order $CF_3 < (CF_3)_2 CF < C_6 F_5$, and $C_6 F_5 IF_4$ is stable indefinitely at 20°.

Attempts to isolate CF₃IF₂ from CF₃I and ClF₃ were unsuccessful. Although n.m.r. evidence for the formation of CF_3IF_2 was obtained (first-order A_3X_2 spectrum, δ_A -28.8, $\delta_{\rm x}$ -172.7 p.p.m. $J_{\rm AX}$ 8 Hz), the compound decomposed rapidly at 20°. It has been reported that $C_6F_5IF_2$, which is prepared from C_6F_5I and F_2 at -78° , decomposes above -5°.3 It is clear that CF3IF4 and C₆F₅IF₄ are more stable than the analogous iodine(III) compounds, in contrast to previous work.2

We thank the S.R.C. and the S.E.D. for financial support.

(Received, 5th June 1972; Com. 953.)

[†] This compound and (CF₃)₂CFIF₄ were characterised by analysis and by their n.m.r. and mass spectra.

¹ M. Schmeisser and E. Scharf, Angew. Chem., 1959, 71, 524.

C. S. Rondestvedt, jun., J. Amer. Chem. Soc., 1969, 91, 3054.
M. Schmeisser, K. Dahmen, and P. Sartori, Chem. Ber., 1970, 103, 307.