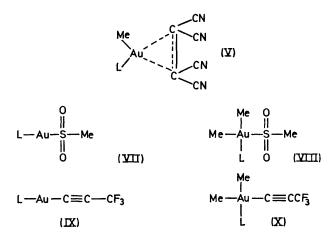

Reactions of the Gold-Methyl Bond

By A. JOHNSON, R. J. PUDDEPHATT,* and J. L. QUIRK (Donnan Laboratories, The University of Liverpool, Liverpool L69 3BX)


Summary Olefin and acetylene complexes of a methylgold(I) compound have been isolated; they are believed to be important intermediates in further reactions of the methylgold bond.

THE methylgold(I) complex MeAuPPh₃ reacts with tetrafluoroethylene, C_2F_4 , to give the insertion compound, MeCF₂CF₂AuPPh₃, but with hexafluorobut-2-yne, C_4F_6 , ethane is eliminated and CF₃(Ph₃PAu)C=C(AuPPh₃)CF₃ is formed.^{1,2} Previous work with methylplatinum complexes suggested that intermediates in these reactions, which are important as models for transition-metal catalysis, might be isolated if a less bulky phosphine ligand were used.³

This has now been achieved using the ligand dimethylphenylphosphine, L.

MeAuL (I; $L = PMe_2Ph$) reacts rapidly with C_4F_6 to give a stable 2:1 adduct (MeAuL) $_2C_4F_6,\ (II).$ Analytical† and spectroscopic (i.r., ¹H and ¹⁹F n.m.r.) data suggest that (II) is an unusual π -complex in which the acetylene acts as a bridging ligand.^{4,5} Thus the ¹H n.m.r. spectrum of (II) in $CDCl_{3}$ contained peaks due to methylgold, δ (MeAu) 0.79 p.p.m. [d, ${}^{3}J$ (PH) 7.1 Hz], and methylphosphorus, δ (MeP) -2.05 p.p.m. [d, ²J (PH) 9.5 Hz], peaks, with relative areas in the expected ratio of 1:2. In benzene or

perdeuterioacetone the methylphosphorus peaks appeared as two doublets confirming that there is no plane of symmetry containing the phosphorus-gold bonds.³ The ¹⁹F n.m.r. spectrum contains an unsymmetrical multiplet centred at δ 52·4 p.p.m. from CFCl₃, suggesting that the CF₃ groups are non-equivalent, and hence that the cis-configuration about the bridging acetylene is present in (II), since in the trans-configuration the CF₃ groups would be identical. The i.r. spectrum of (II) contains a band at 502 cm⁻¹ due to the methylgold stretching vibration [compare the value of 528 cm^{-1} in (I)], and weak peaks at 1565 cm⁻¹ and 1586 cm⁻¹ which can be assigned to the C=C stretching mode of the bridging acetylene.⁶

A solution of (II) in acetone containing excess of C_4F_6 slowly decomposed by eliminating ethane to give $(LAu)_2C_4F_6$ (III), but in ether solution the major product was that of cis-insertion into the methylgold bond (IV).

In contrast, C_2F_4 reacts to give insertion only,¹ presumably because it can complex to only one methylgold unit. We have been unable to isolate such a complex, but the stronger π -acid tetracyanoethylene does form an unstable 1:1 adduct with (I). The structure (V) which is predicted by analogy with the structures of isoelectronic Pt^o complexes⁷ is consistent with the spectroscopic properties of the compound.

In contrast to this behaviour, the gold(III) derivative $Me_{3}AuL$ (VI; $L = PMe_{2}Ph$) is quite unreactive towards C_2F_4 and C_4F_6 presumably because, in this higher oxidation state, the filled *d*-orbitals on gold are too stable to interact with the π -acids C_2F_4 and C_4F_6 so that stable intermediate π -complexes cannot be formed.⁸ If the π -complexes were not intermediates in these reactions, the gold(I) and gold(III) derivatives should be about equally reactive towards electrophiles.⁹ This type of reactivity is observed in reactions of SO_2 and $CF_3C \equiv CH$ which give the insertion compounds (VII) and (VIII) and the alkynylgold compounds (IX) and (X), respectively.

(Received, 15th May 1972; Com. 827.)

† Satisfactory C,H,F analyses were obtained. Mol. wt. in benzene: calc. 862, found 932.

¹C. M. Mitchell and F. G. A. Stone, Chem. Comm., 1970, 1264; J.C.S. Dalton, 1972, 102.

- ² C. J. Gilmore and P. Woodward, Chem. Comm., 1971, 1233.
 ³ H. C. Clark and R. J. Puddephatt, Inorg. Chem., 1970, 9, 2670; 1971, 10, 18.
- ⁴O. S. Mills and B. W. Shaw, J. Organometallic Chem., 1968, 11, 595

- ⁶ J. L. Boston, D. W. A. Sharp, and G. Wilkinson, J. Chem. Soc., 1962, 3488.
 ⁶ A. I. Gusev and Yu. T. Struchkov, J. Struct. Chem., 1970, 11, 340.
 ⁷ A. McAdam, J. N. Francis, and J. A. Ibers, J. Organometallic Chem., 1971, 29, 149.
- ⁸ B. W. Davies, N. C. Payne, and R. J. Puddephatt, *Canad. J. Chem.*, in the press. ⁹ B. J. Gregory and C. K. Ingold, *J. Chem. Soc.* (B), 1969, 276.