Crystal Structure of Potassium Tri-hydrogen Di-malonate: a Neutron Diffraction Study

By Murdoch Currie

(Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Potassium tri-hydrogen di-malonate is an acid salt of Type B_2 , and has three very short, but unsymmetrical hydrogen bonds; two of these, with $O \cdots O =$ $2 \cdot 543(8)$ and $2 \cdot 554(7)$ Å respectively, are intermolecular, whilst the third, with $O \cdots O = 2 \cdot 513(9)$ Å, is intramolecular, and completes a planar six-membered ring. DURING the preparation of the acid salt potassium hydrogen malonate (KHM), which has been studied by both X-ray¹ and neutron² diffraction, crystals of a second salt, potassium tri-hydrogen di-malonate (KH₃M₂) were produced. The crystal structure of this salt, which has a Type B_2 i.r. spectrum free from the anomalies shown in the Type A_2 spectrum of KHM itself,¹ has now been determined.

Crystal data: $KH_3(C_3H_2O_4)_2$, M = 244.2, Monoclinic, a =8.489(6), b = 12.201(11), c = 9.658(7) Å, $\beta = 108^{\circ}10' (\pm 4')$, $U = 950.22 \text{ Å}^3$, Z = 4, $D_c = 1.706$. Space group $P2_1/c$ (C_{2h}^{5}) ; no molecular symmetry required.

FIGURE. The crystal structure as seen in the a-axial projection. In order of decreasing size the open circles represent K+, O, and H; the hatched, C.

The structure was solved by direct methods using X-ray data. Neutron-diffraction data were collected on a fourcircle diffractometer in the DIDO reactor at A.E.R.E., Harwell, and after least-squares refinement with anisotropic vibrational parameters R was 0.079 for the 1051 reflexions with $|F_0| > 3\sigma$ (F₀).

- ¹ J. G. Sime, J. C. Speakman, and R. Parthasarathy, *J. Chem. Soc.* (*A*), 1970, 1919. ² M. Currie and J. C. Speakman, *J. Chem. Soc.* (*A*), 1970, 1923.
- ⁸ M. Sundaralingam and L. H. Jensen, Acta Cryst., 1965, 18, 1053.
- ⁴ R. D. Ellison and H. A. Levy, Acta Cryst., 1965, 19, 260.

The structure is shown in the Figure. Two different H_2M molecules are linked through intermolecular O-H · · · O hydrogen bonds to one atom of the HM- residue, which itself has an intramolecular hydrogen bond. Some dimensions in the malonate residues are as follows:

The hydrogen bonds are all very short and unsymmetrical. In the intermolecular bonds $O \cdot \cdot \cdot O = 2.543(8)$ and 2.554(7) Å, O-H = 1.050(12) and 1.018(10) Å, and $O-H \cdots O = 172^{\circ}$ and 163° , respectively. Of particular in terest, however, is the much less common intramolecular bond, which has $O \cdots O = 2.513(9)$ Å, O-H = 1.033(14) Å and $O-H \cdots O = 155^{\circ}$, the O-H bond and $H \cdots O$ contact

	TABLE				
		C=Oa	$C-O(H)^{a}$	$C - C = O^{b}$	С-С-О(Н)ь
	٢	1.243(6)		120.0	
HM-	~	1.260(6)		116.8	
	C	1.219(7)	1.318(7)	121.2	117.8
H ₂ M	ſ	1.205(8)	1.318(8)	124.3	111.7
	ſ	1.219(5)	1.320(7)	123.8	112.0

^a Distances in Å. ^b Angles in degrees.

each forming one side of an almost planar six-membered ring (a similar situation is found in salicylic acid).³ This may be contrasted with the symmetrical hydrogen bond in potassium hydrogen chloromaleate,⁴ which has $O \cdots O =$ 2.403(3) Å and O-H \cdots O = 175.4° ; in this case the O \cdots O contact forms one side of a six-membered ring, thus accounting for the shortness and almost complete linearity of the bond.

I thank the S.R.C. and U.K.A.E.A. for making neutrondiffraction facilities available and Mr. R. S. Dunlop for help with the data collection.

(Received, 22nd May 1972; Com. 874.)