1127

Stable Monoalkoxyfluorophosphoranes

By Dominique U. Robert, Gilles N. Flatau, Claire Demay, and Jean G. Riess*

(Départment de Chimie, Institut de Mathématiques et Sciences Physiques, Parc Valrose, 06034 Nice Cedex, France)

Summary Thermally stable monoalkoxyfluorophosphoranes, $R^{1}PF_{3}(OR^{2})$, with $R^{1} = Me$ and Ph, are obtained when R^{2} is either an electron-attractive group or a neopentyl group; the fluorophosphoranes undergo slow redistribution reactions of fluorine vs. alkoxy-groups in which the five-co-ordinate state of the phosphorus atom is preserved.

As yet, only a limited number of alkoxyfluorophosphoranes has been reported,¹ mostly as n.m.r.-detected unstable reaction intermediates. The lack of a general route for their preparation has been attributed to the instability^{1,2} of these compounds with respect to the formation of the corresponding fluorophosphoryl derivatives, especially in the case of the monoalkoxy-compounds.[†]

We have found that the stability of the monoalkoxy-fluorophosphoranes, $R^1PF_3(OR^2)$ ($R^1 = Me$ or Ph), is considerably improved when R^2 is either an electron-attractive group or an isobutyl[‡] or a neopentyl group. Thus, the compounds (Ia—j) were the predominant

 $[\]dagger$ The perfluoroalkoxy- 3 or perfluoroalkyl- 4 fluorophosphoranes, and the aryloxyfluorophosphoranes^{1a} appear to be more stable; however, the monoaryloxy-derivatives of formula RPF₃(OPh) were not obtained.

[‡] With $R^2 = t$ -butyl rapid decomposition of the phosphorane occurs above -50° .

1128

	Rª	R ^s
R ¹ PF ₃ (OR ²)	a; CH2CH2Cl	f; CH ₂ CCl ₃
	b; CH ₂ CH ₂ Br	g; CH ₂ CF ₃
$R^1 = Me and Ph$	c; CH ₂ CH ₂ CN	h; Bu ⁱ
	d; CH ₂ CH ₂ OMe	i; CH2CMe3
(I)	e: CH.CHCl.	i: CH.CMe.(NO.)

products (>95%) of the cleavage reaction of the trimethylsilyl ether of the alcohols by a stoicheiometric amount of both methyl- and phenyl-tetrafluorophosphorane (II), according to equation (1).

$$\begin{array}{l} \mathrm{R}^{1}\mathrm{PF}_{4} + \mathrm{Me}_{3}\mathrm{SiOR}^{2} \longrightarrow \mathrm{R}^{1}\mathrm{PF}_{3}(\mathrm{OR}^{2}) + \mathrm{Me}_{3}\mathrm{SiF} \\ (\mathrm{II}) & (\mathrm{I}) \end{array}$$

The structure of these highly air-sensitive derivatives was established by low temperature ¹H and ¹⁹F n.m.r. as well as by m.s. analysis. At low temperatures the structure consists of a trigonal bipyramid, with two fluorine atoms in the apical positions, and this undergoes rapid pseudorotation at room temperature [ΔG^{\ddagger} ca. 12.5 kcal mol⁻¹ for (If)]. This is in marked contrast to the slowness of the pseudorotation process in the corresponding amino-5 or alkylthio-6 derivatives, for which no fluorine exchange is observed at room temperature on the n.m.r. scale. This implies that the more electronegative alkoxy-groups can assume the apical positions more easily. The ¹⁹F n.m.r. data from low temperature spectra (δ in p.p.m. from CFCl₃, J in Hz) show little dependence on the nature of R²: for R¹ = Me, $\delta F_{\mathbf{B}}$ 26 ± 1 , $\delta F_{e} 67 \pm 1$; for $R^{1} = Ph$, $\delta F_{a} 41 \pm 2$, $\delta F_{e} 66 \pm 1$;

in both cases $J(P-F_{a})$ 830 \pm 15, $J(P-F_{e})$ 975 \pm 15, $J(F_{a}-F_{e})$ 64 ± 2 . No evidence for ionic isomers was found.

Thermal decomposition, with loss of the pentaco-ordinate state of the phosphorus atom, sets in near 60° for (Ih), 120° for (Ii), in the range of 150-170° for (Ia-e), while heating to ca. 200° is necessary to decompose (If), (Ig), and (Ij). The decomposition products depend on R²: with (Ia), (Ih), and (Ii), R¹P(O)F₂ and R²F are formed almost exclusively; with (Ib) they are accompanied by some dibromoethane; with (Ic) an elimination process yields mainly acrylonitrile; in the other cases, additional compounds, such as the ether R^2OR^2 and the alkoxyfluorophosphonate $R^1P(O)F(OR^2)$, were identified.

At lower temperatures $[0^{\circ} \text{ for (Ih)}, \text{ up to } 100^{\circ} \text{ for (If) or }$ (Ig)] a slow interconversion among fluorophosphoranes, without loss of the pentaco-ordinate character of the phosphorus atom, is observed. This implies the redistribution of fluorine atoms vs. alkoxy-groups, according to equation (2). The equilibrium (2) lies to the right and may

$$2 \operatorname{R^{1}PF}_{3}(\operatorname{OR}^{2}) \rightleftharpoons \operatorname{R^{1}PF}_{4} + \operatorname{R^{1}PF}_{2}(\operatorname{OR}^{2})_{2}$$
(2)
(I) (II) (III)

be shifted by continuously pumping off the more volatile tetrafluorophosphorane (II), thus providing an interesting route for the synthesis of the dialkoxyfluorophosphoranes (III).

(Received, 24th July 1972; Com. 1271.)

§ The corresponding alcohol was kindly supplied by Dr. H. Quast (Würzburg).

¹ (a) S. C. Peake, M. Fild, M. J. C. Hewson, and R. Schmutzler, *Inorg. Chem.*, 1971, 10, 2723; (b) G. I. Drozd, V. V. Sheluchenko, and S. Z. Ivin, *Uspekhi Khim.*, 1970, 2, 5; G. I. Drozd, S. Z. Ivin, and M. A. Sokalskii, *Zhur. obshchei. Khim.*, 1969, 39, 1177; (c) D. H. Brown, K. D. Crosbie, G. W. Fraser, and D. W. A. Sharp, *J. Chem. Soc.* (A), 1969, 872; (d) L. Kolditz, K. Lehmann, W. Wieker, and A. R. Grimmer, Z. anorg. Chem., 1968, 360, 259.

² H. Koop and R. Schmutzler, J. Fluorine Chem., 1971/72, 1, 252; D. U. Robert and J. G. Riess, Tetrahedron Letters, 1972, 847.

⁵ D. E. Young and W. B. Fox, Inorg. Nuclear Chem. Letters, 1971, 7, 1033.
⁶ I. L. Knunyants, V. V. Tyuleneva, E. Y. Pervova, and R. N. Sterlin, Izvest. Akad. Nauk S.S.S.R., 1964, 1797.
⁵ R. Schmutzler, J. Chem. Soc., 1965, 5630; M. A. Landau, V. V. Sheluchenko, G. I. Drozd, S. S. Dubov, and S. Z. Ivin, Zhur. strukt. Khim., 1967, 8, 1097.
⁶ S. C. Beeke and P. Schmutzler, I. Chem. Soc. (4), 1070, 1049.

⁶S. C. Peake and R. Schmutzler, J. Chem. Soc. (A), 1970, 1049.