Trimethylsilylmethylcopper, a Stable Copper(I) Alkyl

By M. F. LAPPERT* and R. PEARCE

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Interaction of Me_3SiCH_2Li with CuI gives $(Me_3SiCH_2Cu)_n$ a stable, volatile, petrole um-soluble copper-(I) alkyl (tetramer in C_6H_6 , hexamer in $n-C_6H_{14}$), which shows a parent ion in the mass spectrum corresponding to the tetramer (n = 4); decomposition involves free radical pathways.

ALKYLCOPPER(I) complexes are unstable, decomposing at or below 0°,¹ and are soluble only in the presence of complexing agents.² Recent reports show that trimethylsilylmethyl (Me₃SiCH₂) and related ligands form a number of kineticallystable, binary alkyls of the early transition metals,³ e.g., (Me₃SiCH₂)₄Ti⁴ and (Me₃SiCH₂)₄Cr;⁵ we now describe the preparation of trimethylsilylmethylcopper, a volatile alkylcopper(I) compound, stable at room temperature and readily soluble in non-polar media.

Treatment of copper(I) iodide in n-hexane-ether (1:1)with lithiomethyltrimethylsilane at $ca. -10^{\circ}$ gave (Me₃- $SiCH_2Cu)_n$ as colourless prisms, m.p. 78-79° (dec.), from n-pentane. The crystals, or a solution in hydrocarbon solvent, are stable in the dark at room temperature, but decomposition occurs upon exposure to light. Cryoscopy of 10% w/w solutions showed that it is tetrameric in benzene and hexameric in cyclohexane. (The structure may resemble that of alkyl-lithium reagents.) The ¹H n.m.r. spectrum indicated that it is diamagnetic, the Me₃Si and CH₂ resonances appearing as singlets at τ 9.80 and 10.18 respectively. The mass spectrum showed a parent ion for the tetramer at m/e 600 for $(Me_3SiCH_2^{63}Cu)_4^+$ with the expected Cu₄ isotope pattern. Fragmentation occurs with loss of Me, Me₄Si, Me₄Si + CH₄, $(Me_3Si)_2CH_2$, and $2Me_4Si$. Pyrolysis in vacuo gave a copper mirror and a volatile,

colourless liquid containing Me₄Si (major product), (Me₃Si)₂-CH₂, (Me₃SiCH₂)₂, and three unidentified minor components. Photolysis or pyrolysis (at 80°) in toluene gave an unidentified, intensely red, copper-containing species, Me₄Si, (Me₃Si)₂CH₂ (only on pyrolysis), (Me₃SiCH₂)₂, PhCH₂CH₂Si-Me₃, and (PhCH₂)₂, in accord with a free radical decomposition pathway.

The stability of $(Me_3SiCH_2Cu)_n$ is presumably associated with the preclusion of the olefin-elimination route to decomposition and the presence of a stable metal cluster (X-ray studies are in hand).

 $(Me_3SiCH_2Cu)_n$ is an alkylating agent: reaction with Me₃SiCl, CH₂=CHCH₂Br, or PhI gave (Me₃Si)₂CH₂, Me₃-SiCH₂CH₂CH=CH₂, or PhCH₂SiMe₃, respectively; with PhCH₂Br, (PhCH₂)₂ (presumably via halogen-metal exchange), as well as the expected PhCH2CH2SiMe3 was formed. The copper-lithium reagent, [(Me₃SiCH₂)₂CuLi], was obtained as a pale-violet, ethereal solution from CuI (1 mol) and Me₃SiCH₂Li (2 mol) and was unchanged after several days at room temperature.

We thank Dr. D. G. H. Ballard and the Corporate Laboratory, I.C.I. Ltd., for their support.

(Received, 15th November 1972; Com. 1912.

¹ K.-H. Thiele and J. Köhler, J. Organometallic Chem., 1968, 12, 225.

² H. O. House, W. L. Respass, and G. M. Whitesides, J. Org. Chem., 1966, 31, 3128; M. Tamura and J. K. Kochi, J. Organometallic Chem., 1972, 42, 205.

³ Cf., C. S. Cundy, B. M. Kingston, and M. F. Lappert, Adv. Organometallic Chem., 1972, 11, 253.

⁴ M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36. ⁵ W. Mowat, A. Shortland, N. J. Hill, M. Yagupsky, and G. Wilkinson, J.C.S. Dalton, 1972, 533.