Cations KrF⁺, XeOF₃⁺, XeF₃⁺, and XeOF₅⁺ and Oxidizing Properties of KrF⁺

By D. E. MCKEE, C. J. ADAMS, A. ZALKIN, and NEIL BARTLETT*

(Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720)

oxidizer) is related to $XeOF_3^+$; the latter is in turn related to XeF_3^+ , the geometry of which has been established by X-ray crystallography.

In earlier communications¹ we showed that the adduct² KrF₂,2SbF₅ was the salt KrF+Sb₂F₁₁⁻. The stretching frequency $\nu(\text{Kr-F}^+) = 626 \text{ cm}^{-1}$ is in excellent agreement with Schaefer's theoretical prediction³ of 620 cm^{-1} .

Summary The $XeOF_5^+$ ion (prepared with KrF⁺ as ordinary oxidizer. We have previously shown¹ that it oxidizes IF_5 to IF_6^+ and have now carried out the oxidation of XeOF₄ to XeOF₅⁺ (XeOF₄ + KrF⁺ \rightarrow XeOF₅⁺ + Kr). Since the syntheses, which involve addition of $XeOF_4$ to $KrF+Sb_2F_{11}^-$ (ca. -10°), were done in quartz apparatus, there was always contamination from O_2^+ salts, but the best preparations yielded no XeOF3+ salts. Raman data for $XeOF_5^+$ (compared with data for IOF_5 and its Xe relatives in Figure 1) show a pattern of lines consistent with In accord with the expected⁴ high value of the electron an IOF₅-like species, but the Xe-F and Xe-O stretching affinity of KrF⁺, the cation has proved to be an extra- frequencies are lower than for IOF_5 . As is seen from

Figure 1, this resembles the situation in XeF_5^+ salts, where v_{sym} (Xe-F) tends to be lower than v_{sym} (I-F) in IF₅.

As part of our study ⁵ of the fluoride ion donor abilities of the xenon fluorides and oxyfluorides, we have also investigated the systems $XeOF_4-SbF_5$ and XeF_4-SbF_5 . Unambiguous identification of the $XeOF_5^+$ ion demanded a full characterization of the former system. A combination of X-ray crystallographic and Raman spectroscopic data has established that XeF_3^+ is the only cation present in the XeF₄-SbF₅ system; Raman spectroscopic evidence indicates that the $XeOF_{3}^{+}$ cation is the only one present in the XeOF₄-SbF₅ system. Since we began our studies Gillespie and his co-workers have given vibrational and ¹⁹F n.m.r. spectroscopic evidence for both XeF_3^{+6} and $XeOF_3^{+.7}$

FIGURE 1. Raman spectra of xenon cation species and related iodine species.

* Raman line assigned to anion.

^a Ref. 12. ^b C. J. Adams and N. Bartlett, to be published. The fundamental frequencies of XeF_5^+ are sensitive functions of the counterion and phase, although solid $XeF_5^+BF_4^-$ is a typical example. Common values for the stretching frequencies are: $v_1(a_1)$ 650-680; $v_2(a_1)$ 585-630; $v_4(b_1)$ 600-640; $v_7(e)$ 640-670 cm⁻¹. ^a Ref. 13. ^d This work. Lines attributable to dioxygenyl fluoroantimonates have been deleted. • This work. Assignments for XeOF₃⁺: 944 cm⁻¹, v(Xe-O); 649, v_{asym} (*ax.* XeF₂); 638, v(eq. Xe-F); 601 v_{sym} (*ax.* XeF₂); 358, 333, $\delta(FXeF)$, $\delta(OXeF)$. Our assignments differ from those of Gillespie et al.7 only in placing out assignments then non-noise of outspie u_a . Only in placing v_{asym} (ax. XeF₂) higher than v_{sym} (ax. XeF₂), as has been found for structurally related molecules, *e.g.* TeF₄.¹⁴ ^t This work. Assignments for XeF₃⁺: 640 cm⁻¹, v(eq. Xe-F); 618 v_{asym} (ax. XeF₂); 582 v_{sym} (ax. XeF₂); 363 δ (FXeF).

Our studies have shown that in the XeF_4 -SbF₅ system there are two compounds, XeF_3+SbF_6 and $XeF_3+Sb_2F_{11}$: efforts to make $Xe_2F_7^+SbF_6^-$ have failed. Both salts are pale yellow-green solids. XeF₃+SbF₆⁻ (m.p. 109-113°) is dimorphic, with a transition temperature of $ca. 90^{\circ}$; the low temperature form is monoclinic with a = 5.50 (1), b = 15.50 (1), c = 8.95 (1) Å, $\beta = 102.9$ (3)°, U = 743.3Å³, Z = 4, $D_c = 3.81 \text{ g cm}^{-3}$. XeF₃+Sb₂F₁₁⁻ (m.p. 81-83°) is triclinic with a = 8.237(5), b = 9.984(20), c = 8.004(5) Å,

 $\alpha = 72.54(5), \beta = 112.59(7), \gamma = 117.05(21)^{\circ}, U = 534.9 \text{Å}^3, Z = 2, D_c = 3.98 \text{ g cm}^{-3}.$ The structure of the latter has been refined in space group P1 using three-dimensional graphite-monochromatized Mo- K_{α} X-ray data. With anisotropic temperature factors for all atoms, a final conventional R factor of 0.035 for 1823 independent reflections for which $I \ge 3\sigma(I)$ has been obtained. The crystal structure is built up from the structural units, XeF₃+Sb₂F₁₁-, shown in Figure 2. The T shaped cation is planar and lies in the same plane as a fourth fluorine atom, which makes a close contact of 2.50 Å to the xenon atom. This interaction of the cation and the anion is consistent with a distorted trigonal bipyramidal configuration of two axial F ligands, one equatorial F ligand, and two sterically active, equatorial, non-bonding valence-electron pairs about the Xe atom. Such a cation should have a maximum polarizing effect normal to the triangular faces containing the two nonbonding pairs. As in the electronically related molecules ClF_3^{8} and BrF_3^{9} the axial bonds in XeF_3^{+} (1.88 and 1.89 Å) are longer than the equatorial (1.83 Å). This is consistent with designation of the latter as an electron-pair bond and the former as three-centre four-electron bonds.4,10

FIGURE 2. The XeF₃+Sb₂F₁₁⁻ structural unit.

In the XeOF₄-SbF₅ system, Selig had previously established¹¹ the compound XeOF₄,2SbF₅, but structural information was lacking until the recent report by Gillespie and his co-workers.7 In our studies, two compounds have been isolated (1:1, m.p. 104-105° and 1:2, m.p. 61-66°). The $XeOF_4$, in the SbF_5 complexes, is certainly no longer molecular, as in the 1:1 XeF₂,XeOF₄ molecular adduct,¹⁰ and the marked increase in the Xe-F stretching frequency indicates cation formation. Furthermore, comparisons of the Raman spectra of the SbF₅ complexes, given in Figure 1, indicate the salt formulations XeOF₃+SbF₆- and XeOF₃+- $Sb_2F_{11}^-$. The similarities of the XeOF₃⁺ and XeF₃⁺ spectra suggest a close structural relationship. It is therefore probable that the $XeOF_3^+$ geometry will resemble that of XeF_{3}^{+} to which an oxygen atom has been added to a Xe electron-pair site (equatorial).

The similarity of the Xe-O stretching frequencies suggests that the Xe-O bonds in XeOF₄ and XeOF₄ must be nearly the same. Also, that the axial stretching frequencies of $XeOF_{3}^{+}$ lie higher than those of XeF_{3}^{+} indicates that the Xe-F axial bonds will be slightly shorter in the former.

This work was supported by the U.S. Atomic Energy

(Received, 25th September 1972; Com. 1639.)

Commission and CIA is grateful to the Commonwealth Fund

¹ D. E. McKee, R. Mews, and N. Bartlett, Abstracts of the 162nd American Chemical Society National Meeting, September 14-16, 1971, FLUO 2; N. Bartlett, D. Gibler, D. McKee, R. Mews, and M. Wechsberg, Abstracts of The Sixth International Symposium on Fluorine Chemistry, July 18–23, 1972, C24. ² H. Selig and R. D. Peacock, J. Amer. Chem. Soc., 1964, 86, 3895.

for a Harkness Fellowship.

³ B. Liu and H. F. Schaefer III, J. Chem. Phys., 1971, 55, 2369. ⁴ N. Bartlett, Endeavour, 1972, XXXI, 107.

⁶ F. O. Sladky, P. A. Bulliner, N. Bartlett, B. Y. DeBoer, and A. Zalkin, *Chem. Comm.*, 1968, 1048; F. O. Sladky, P. A. Bulliner, and N. Bartlett, *J. Chem. Soc.* (A), 1969, 2180; N. Bartlett, and F. O. Sladky, *J. Amer. Chem. Soc.* 1968, 90, 5316; N. Bartlett, M. Gennis, D. D. Gibler, B. K. Morrell, and A. Zalkin, submitted for publication in *Inorg. Chem.*

⁶ R. J. Gillespie, B. Landa, and G. J. Schrobilgen, *Chem. Comm.*, 1971, 1543.
⁷ R. J. Gillespie, B. Landa, and G. J. Schrobilgen, *J.C.S. Chem. Comm.*, 1972, 607.
⁸ D. F. Smith, *J. Chem. Phys.*, 1953, 21, 609.

[•] D. W. Magnuson, J. Chem. Phys., 1957, 27, 223. ¹⁰ N. Bartlett and M. Wechsberg, Z. anorg Chem., 1971, 385, 5.

¹¹ H. Selig, *Inorg. Chem.*, 1966, 5, 183.
¹² L. E. Alexander and I. R. Beattie, *J. Chem. Soc.* (A), 1971, 3091.
¹³ D. F. Smith and G. M. Begun, *J. Chem. Phys.*, 1965, 43, 2001.
¹⁴ C. J. Adams and A. J. Downs, *Spectrochim. Acta*, 1972, 28A, 1841.