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Cations KrF+, XeOF,+, XeF,+, and XeOF,+ and Oxidizing Properties of KrFS 

By D. €3. MCKEE, C .  J. ADAMS, A. ZALKIN, and NEIL BARTLETT* 
(Inorganic Materials Research Division, Lawrence Berkeley Laboratory avtd Department of Chemistry, University of Cali fovnia, 

Berkeley, California 94720) 

Summary The XeOF5+ ion (prepared with KrF+ as 
oxidizer) is related to XeOF,+; the latter is in turn re- 
lated to XeF,+, the geometry of which has been estab- 
lished by X-ray crystallography. 

IN earlier communications1 we showed that the adduct2 
KrF,, %bF, was the salt KrF+Sb,F,,-. The stretching 
frequency v(Kr-F+) = 626 cm-l is in excellent agreement 
with Schaefer’s theoretical prediction3 of 620 cm-l. 

In accord with the expected4 high value of the electron 
affinity of KrF+, the cation has proved to be an extra- 

ordinary oxidizer. We have previously shown1 that it 
oxidizes IF, to IF,+ and have now carried out the oxidation 
of XeOF, to XeOF,+ (XeOF, + KrF+ -+ XeOF,+ + Kr). 
Since the syntheses, which involve addition of XeOF, to 
KrF+Sb2Fll- (GU. -loo), were done in quartz apparatus, 
there was always contamination from 02+ salts, but the 
best preparations yielded no XeOF,+ salts. Raman data 
for XeOF5+ (compared with data for IOF, and its Xe 
relatives in Figure 1) show a pattern of lines consistent with 
an IOF,-like species, but the Xe-F and Xe-0 stretching 
frequencies are lower than for IOF,. As is seen from 
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Figure 1, this resembles the situation in XeF,+ salts, where 
Vsym (Xe-F) tends to be lower than Vsym (I-F) in IF,. 

As part of our study of the fluoride ion donor abilities of 
the xenon fluorides and oxyfluorides, we have also investi- 
gated the systems XeOF,-SbF, and XeF4-SbF,. Un- 
ambiguous identification of the XeOF,+ ion demanded a 
full characterization of the former system. A combination 
of X-ray crystallographic and Raman spectroscopic data 
has established that XeF3+ is the only cation present in the 
XeF,-SbF, system ; Raman spectroscopic evidence indicates 
that the XeOF,+ cation is the only one present in the 
XeOF4-SbF, system. Since we began our studies Gillespie 
and his co-workers have given vibrational and 19F n.m.r. 
spectroscopic evidence for both XeF,+ 6 and XeOF,+.' 

Q = 72*54(5), = 112*59(7),y = 117*05(21)", U = 534*9A3, 
2 = 2, Dc = 3.98 g ern-,. The structure of the latter has 
been refined in space group P 1  using three-dimensional 
graphite-monochromatized Mo-K, X-ray data. With ani- 
sotropic temperature factors for all atoms, a final con- 
ventional I? factor of 0.035 for 1823 independent reflections 
for which I >, 3 4 1 )  has been obtained. The crystal 
structure is built up from the structural units, XeF,+Sb,F,,-, 
shown in Figure 2. The T shaped cation is planar and lies 
in the same plane as a fourth fluorine atom, which makes a 
close contact of 2.50 to the xenon atom. This interaction 
of the cation and the anion is consistent with a distorted 
trigonal bipyramidal configuration of two axial F ligands, 
one equatorial F ligand, and two sterically active, equatorial, 
non-bonding valence-electron pairs about the Xe atom. 
Such a cation should have a maximum polarizing effect 
normal to the triangular faces containing the two non- 
bonding pairs. As in the electronically related molecules 
CIF,s and BrFSg the axial bonds in XeF3+ (1.88 and 1.89 A) 
are longer than the equatorial (1.83 A). This is consistent 
with designation of the latter as an electron-pair bond and 
the former as three-centre four-electron bonds.*s10 
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FIGURE 1. Raman spectra of xenon cation species and related 
iodine species. 

* Raman line assigned to anion. 

"Ref. 12. b C. J .  Adams and N. Bartlett, t o  be published. 
The fundamental frequencies of XeF,+ are sensitive functions of 
the counterion and phase, although solid XeF,+BF,- is a typical 
example. Common values for the stretching frequencies are: 
vl(al)  650-680; vz(al) 585-630; ~4(b1) 600-640; v,(e) 640-670 
cm-l. c Ref. 13. * This work. Lines attributable to dioxygenyl 
fluoroantimonates have been deleted. e This work. Assignments 
for XeOF,+: 944 cm-l, v(Xe-0) ; 649, Vasym (ax. Xel?,) ; 638, 
v(eq. Xe-F); 601 Vsym (ax. XeF,); 358, 333, G(FXeF), G(0XeF). 
Our assignments differ from those of Gillespie et aL7 only in placing 
Vasym (ax. XeF,) higher than Vsym (ax. XeF,), as has been found 
for structurally related molecules, e.g. TeF4.14 f This work. 
Assignments for XeF,+: 640 cm-l, v(eq. Xe-F); 618 Vasym (ax. 
XeF,) ; 582 vsym (ax. XeF,) ; 363 G(FXeF). 

Our studies have shown that in the XeF,-SbF, system 
there are two compounds, XeF3+SbF,- and XeF,+Sb,F,,- : 
efforts to make Xe,F,+SbF,- have failed. Both salts are 
pale yellow-green solids. XeF,+SbF,- (m.p. 109-1 13") 
is dimorphic, with a transition temperature of ca. 90"; the 
low temperature form is monoclinic with a = 5-50 ( l) ,  

2 = 4, Dc = 3.81 g ern-,. XeF,+Sb,F,,- (m.p. 81-83") is 
triclinic with a = 8.237(5), b = 9.984(20), G = 8.004(5) A, 

b = 15.50 (l), c = 8.95 (1) A, /3 = 102.9 (3)", U = 743.3A3, 

. .-. 

FIGURE 2. The XeF,+Sb,F,,- stvuctural unit. 

In the XeOF4-SbF, system, Selig had previously estab- 
lishedll the compound XeOF,,2SbF5, but structural 
information was lacking until the recent report by Gillespie 
and his co-workers.' In our studies, two compounds have 
been isolated (1 : 1, m.p. 1 0 A 1 0 5 °  and 1 : 2, m.p. 61-66"). 
The XeOF,, in the SbF, complexes, is certainly no longer 
molecular, as in the 1 : 1 XeF,,XeOF, molecular adduct,lO 
and the marked increase in the Xe-F stretching frequency 
indicates cation formation. Furthermore, comparisons of 
the Raman spectra of the SbF, complexes, given in Figure 1, 
indicate the salt formulations XeOF,+SbF,- and XeOF,+- 
Sb,F,,-. The similarities of the XeOF,+ and XeF3+ spectra 
suggest a close structural relationship. It is therefore 
probable that the XeOF3+ geometry will resemble that of 
XeF,+ to which an oxygen atom has been added to a Xe 
electron-pair site (equatorial). 

The similarity of the Xe-0 stretching frequencies suggests 
that the Xe-0 bonds in XeOF3+ and XeOF, must be nearly 
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the same. Also, that the axial stretching frequencies of 
XeOF3+ lie higher than those of XeF3+ indicates that the 
Xe-F axial bonds will be slightly shorter in the former. 
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