Synthesis and Crystal Structure of Bis(triethylphosphine)[hexakis(trifluoromethyl)benzene]platinum, and of a Nickelacycloheptatriene Complex

By J. Browning, \dagger M. Green, B. R. Penfold,* \dagger J. L. Spencer, and F. G. A. Stone*
(Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 ITS and \dagger Department of Chemistry, University of Canterbury, Christchurch, New Zealand)

Summary Reaction of $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ with hexakis(trifluoromethyl)benzene affords $\left[\mathrm{Pt}\left\{\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, with a 1,2-hapto-structure; reaction of the nickel analogue with more hexafluorobut-2-yne gives a new kind of complex, a nickelahexakis(trifluoromethyl)cyclohepta-cis,trans,cistriene; both structures have been established by X-ray crystal analysis.

Reaction of bis(cyclo-octa-1,5-diene)nickel with hexa-fluorobut-2-yne or treatment of ethylenebis(triphenylphosphine)nickel with hexakis(trifluoromethyl)benzene affords complexes of type $\left[\mathrm{Ni}\left\{\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{8}\right\} \mathrm{L}_{2}\right]\left[\mathrm{L}_{2}=1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right.$; $\left.\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OMe})_{3}, \mathrm{AsMe}_{2} \mathrm{Ph}\right]$; the phosphite and arsine compounds being derived from the cyclo-octa-1,5-diene complex by ligand exchange. ${ }^{1}$ The ${ }^{19} \mathrm{~F}$ n.m.r. spectra of these compounds showed a single sharp signal suggesting a fluxional system, but attempts to obtain crystals suitable for X-ray crystallography were unsuccessful. Hence attention was directed at related platinum chemistry.

Reaction of tris(triethylphosphine)platinum ${ }^{2} \ddagger$ with hexakis(trifluoromethyl)benzene in toluene at -50° afforded orange crystals of (I) $\left.\left[\mathrm{Pt}^{2} \mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, m.p. 203°.

The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum (30°) showed a single resonance at 51.2 p.p.m. [18 F , apparent t with ${ }^{195} \mathrm{Pt}$ satellites, J_{PF} $3.0 \mathrm{~Hz}, J_{\text {PtF }} 27.5 \mathrm{~Hz}, \mathrm{CF}_{3}$], rel. to $\mathrm{CCl}_{3} \mathrm{~F}$. However, at -90° the spectrum shows two unresolved multiplets at 47.7 and 52.5 p.p.m. (ratio l:2). An X-ray crystallographic study of this fluxional molecule was therefore undertaken [monoclinic space group $P 2_{1} / c ; R=0.057$ for 2154 reflections].

The molecule is illustrated in Figure 1 which shows that the $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}$ part is bonded to two adjacent carbon atoms of the non-planar benzene ring. The dihedral angle between the mean plane of this ring and the group $\mathrm{PtC}(7)-$ $C(12)$ is 102°.

Figure 1. A general view of one molecule $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}^{2}\left(\mathrm{C}_{6}\left(\mathrm{CF}_{8}\right)_{6}\right\}\right]$, with all atoms labelled individually except for the CF_{3} groups.

Relevant bond lengths and angles are: Pt-P 2.331(5), 2.295(6); Pt-C(7) 2.15(2); Pt-C(12) 2.14(2); C(7)-C(8) 1.50(2); $\mathrm{C}(8)-\mathrm{C}(9) \quad 1 \cdot 36(3) ; \mathrm{C}(9)-\mathrm{C}(10) \quad 1 \cdot 48(3) ; \mathrm{C}(10)-\mathrm{C}(11)$ $1 \cdot 36(3) ; \mathrm{C}(11)-\mathrm{C}(12) 1 \cdot 48(3)$; C(7)-C(12) $1 \cdot 51(3) \AA$; $\mathrm{C}(7)-\mathrm{Pt}-$ $\mathrm{C}(12) 41 \cdot 2(7) ; \mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2) 101 \cdot 6(2)^{\circ}$. Thus the $\mathrm{C}-\mathrm{C}$ bond distances of the ring alternate between average values of
\ddagger Prepared more conveniently by treating $\mathrm{Pt}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with PEt_{3} followed by heating the resultant tetrakis Pt^{0} complex.
1.49 and $1.36 \AA$ (consistent with single and double bonds) with the exception of $\mathrm{C}(7)-\mathrm{C}(12)$ which has been significantly lengthened as a result of co-ordination to the platinum atom.

This kind of bonding for an arene-transition metal complex has not been previously found and contrasts with the $1,2,3,4-h^{4}$ bonding mode established ${ }^{3}$ for [hexakis(trifluoromethyl)benzene] (π-cyclopentadienyl)rhodium. It is clear from the variable-temperature ${ }^{19} \mathrm{~F}$ n.m.r. results that (I) undergoes a degenerate intramolecular rearrangement with very low activation energy. The availability of a low-energy reaction path is in striking contrast to both $\left[\mathrm{Rh}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left\{\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}\right]^{4}$ and $\left[\mathrm{Rh}\left(\pi-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{C}_{6}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{6}\right\}\right] ; 5$ the latter showing dynamic behaviour at 155°.

Figure 2. A general view of one molecule of $\left[\left\{(\mathrm{MeO})_{3} \mathrm{P}\right\}_{2} \mathrm{Ni}-\right.$ $\left.\left\{\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{2}\right\}_{3}\right]$ with all atoms labelled individually except for the CF_{3} groups.

Complex (I) reacts slowly with more $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$; however, the nickel analogues $\left[\mathrm{Ni}\left\{\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ and
$\left[\mathrm{Ni}\left\{\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2}\right]$ react at room temperature with three molar equivalents of the acetylene to afford a new type of organometallic. For example, the phosphite compound is transformed into an isomer (II), m.p. 140- 141° ${ }^{[19} \mathrm{F}$ n.m.r. resonances 56.6 p.p.m. ($6 \mathrm{~F}, \mathrm{q}, J_{\mathrm{FF}} 8.0 \mathrm{~Hz}$), 57.3 ($6 \mathrm{~F}, \mathrm{~m}$), and $65.2(6 \mathrm{~F}, \mathrm{~m})$; double irradiation of the highfield signal reduced the low-field signal to a singlet and the other signal to a triplet $\left(J_{\text {PF }} 11.0 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H}$ n.m.r. resonance at $\tau 6.29\left(18 \mathrm{H}\right.$, apparent $\left.\left.\mathrm{t},|J|_{\text {PoCH }} 10.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OP}\right)\right]$. These data did not establish a structure for (II), and therefore, an X-ray crystal structure determination was undertaken [$R=0.050$ for 804 reflections].

The molecule, with symmetry C_{2} imposed by the orthorhombic space group $P b c n$, is illustrated in Figure 2. This shows that (II) may be formally described as a nickel-ahexakis(trifluoromethyl)cyclohepta-cis,trans,cis-triene, a kind of co-ordination compound not previously observed. Preliminary experiments suggest that the reaction path leading to the formation of (II) is not a simple isomerisation reaction.

Relevant bond lengths and angles are: Ni-P 2.215(3); $\mathrm{Ni}-\mathrm{C}(6) \quad 1.96(1) ; \mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right) \quad 1.41(2) ; \mathrm{C}(4)-\mathrm{C}(5) \quad 1.51(1)$; $\mathrm{Ni}-\mathrm{C}(4) 2.04(1) ; \mathrm{C}(5)-\mathrm{C}(6) 1 \cdot 28(1) \AA$; $\mathrm{C}(4)-\mathrm{Ni}-\mathrm{C}(6) 66.8(4)$; $\mathrm{C}(6)-\mathrm{Ni}-\mathrm{C}\left(6^{\prime}\right) \quad 157 \cdot 1(6) ; \quad \mathrm{P}-\mathrm{Ni}-\mathrm{P}^{\prime} \quad \mathrm{I} 13 \cdot 7(2) ; \quad \mathrm{P}-\mathrm{Ni}-\mathrm{C}(6)$ $93 \cdot 3(1) ; \quad \mathrm{C}(4)-\mathrm{Ni}-\mathrm{C}(4)^{\prime} \quad 40 \cdot 4(5) ; \quad \mathrm{P}(1)-\mathrm{Ni}-\mathrm{C}(4) \quad 105 \cdot 9(2)^{\circ}$. Relevant dihedral angles are: $\mathrm{NiC}(4) \mathrm{C}(5) \mathrm{C}(6)-\mathrm{PNiP}^{\prime} 90^{\circ}$; $\mathrm{NiC}(4) \mathrm{C}(5) \mathrm{C}(6)-\mathrm{C}(4) \mathrm{NiC}\left(4^{\prime}\right) \quad 58^{\circ}$; $\mathrm{PNiP}^{\prime}-\mathrm{C}(4) \mathrm{NiC}\left(4^{\prime}\right) \quad 34^{\circ}$.

The interatomic distances indicate that there is a significant interaction between nickel and the formally double bond $\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$ and if we take the centre of this bond as being one point of attachment of the triene, the co-ordination geometry about nickel closely approximates that of a trigonal bipyramid.
(Received, 8th November 1972; Com. 1875.)

[^0]
[^0]: ${ }_{2}^{1}$ J. Browning, C. S. Cundy, M. Green, and F. G. A. Stone, J. Chem. Soc. (A), 1971, 448.
 ${ }^{2}$ D. H. Gerlach, A. R. Kane, G. W. Parshall, J. P. Jesson, and E. L. Muetterties, J. Amer. Chem. Soc., 1971, 93, 3543.
 ${ }^{3}$ M. R. Churchill and R. Mason, Proc. Roy. Soc. (A), 1966, 292, 61.
 ${ }^{4}$ R. S. Dickson and G. Wilkinson, J. Chem. Soc., 1964, 2699.
 ${ }^{5}$ J. W. Kang, R. F. Childs, and P. M. Maitlis, J. A mer. Chem. Soc., 1970, 92, 720.

