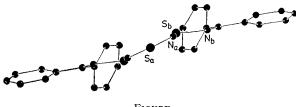
Crystal and Molecular Structure of Bis(diphenylmethylene)trisulphur Tetranitride


By E. M. HOLT* and S. L. HOLT

(Department of Chemistry, University of Wyoming, Laramie, Wyoming 82070)

sulphur-nitrogen chain coplanar.

phosphine, a sulphur atom is lost and a product containing the chain is flat or puckered.

Summary In crystalline form Ph₂CNSNSNSNCPh₂ exists the S₃N₄ fragment is formed. However, the reaction with as a chain structure with the central five members of the triphenylphosphine produces a six-membered sulphurnitrogen ring, five members of which are planar,² whereas an open chain compound results from the reaction with FLUCK¹ has reported the preparation of bis(diphenyl- diphenyldiazomethane. In view of the unexpected partial methylene)trisulphur tetranitride from S_4N_4 and diphenyl- planarity of the ring compound we have determined the diazomethane. As in the reaction of S_4N_4 with triphenyl- structure of the open chain compound to determine whether Crystal data: $Ph_2CNSNSNSNCPh_2$, M 456, orthorhombic, $a = 12\cdot590(4)$, $b = 26\cdot020(9)$, $c = 7\cdot286(2)$ Å, $U = 2386\cdot8$ Å³, $D_m = 1\cdot28$, Z = 4, $D_c = 1\cdot26$ g cm⁻³, space group Pcan. Intensities were recorded on a Picker diffractometer using Cu radiation. Of the 1709 reflections measured, 1107

FIGURE

were classed as observed $[(|F_0|/\sigma|F_0|) > 1.5]$. The structure was refined by least-squares to an R value of

- ¹ E. Fluck, Z. anorg. Chem., 1961, 312, 195.
- ² E. M. Holt and S. L. Holt, Chem. Comm., 1970, 1704.

7.4%, ignoring hydrogens and using anisotropic temperature factors for the 17 independent atoms.

The structure (Figure) shows the central sulphur atom of the molecule lying on an axis of two-fold symmetry. The angle at this sulphur atom is $123\cdot8(7)^{\circ}$ compared with the 100° angle usually found. The central five members of the sulphur-nitrogen chain are planar to within 0.04 Å. The remaining nitrogens are 0.49 Å from that plane. This partial planarity of the sulphur-nitrogen chain is unexpected considering the possible further delocalization of the π bonding that would result from full planarity.

The sulphur-nitrogen bond lengths are: $S_a-N_a = 1.549(8)$, $N_a-S_b = 1.656(9)$, and $S_b-N_b = 1.685(8)$ Å compared with the sulphur-nitrogen double-bond length of 1.55 Å and the single-bond length of 1.76 Å.

This work was supported in part by a N.S.F. grant.

(Received, 17th October 1972; Com. 1777.)