Can Primary Alkyl Halides Hydrolyse by the Ion-pair Mechanism ?

By M. H. Abraham

(Chemistry Department, University of Surrey, Guildford, Surrey)

Summary The standard free energy change for formation of $R^+X^-(aq)$ from RX(aq) is so high in the case of R = Meand Et that primary alkyl halides are unlikely to undergo nucleophilic substitution by the ion-pair mechanism; this mechanism is slightly unfavourable for the case of $R = Pr^i$, but is energetically feasible for the t-butyl halides.

ALTHOUGH Sneen and Larsen's¹ unified ion-pair mechanism of nucleophilic substitution has not been well received,^{2,3} even for the original cases of solvolyses of some s-alkyl substrates,³ Scott⁴ has interpreted $S_{\rm N}$ reactions of the methyl halides in terms of such a mechanism. In its simplest form the ion-pair mechanism reduces to reactions (1) and (2); Scott⁴ suggests that for substitutions of methyl halides in water, $k_{\rm obs} = K_1 \cdot k_2$ so that $\Delta G_{\rm obs}^* = \Delta G_1^\circ + \Delta G_2^{\ddagger}$.

$$RX \rightleftharpoons R^+X^- \tag{1}$$

$$R^+X^- + N \rightarrow Products$$
 (2)

The mechanism thus requires that $\Delta G_{\text{obs}}^* > \Delta G_1^\circ$ and Scott deduces values of ΔG_1° that are compatible with this inequality. Now if the ion-pair mechanism was indeed valid for S_{N} reactions of the methyl halides (the least likely substrates to undergo substitution by such a mechanism), then the general Hughes-Ingold scheme of nucleophilic substitution⁵ would consequently be obsolete. An independent assessment of the feasibility of reaction (1) thus seems obligatory.

TABLE	1.	Calculation	of	ΔG_1°	for	the	reaction	$MeBr(aq) \rightarrow$
		Me+Br-(a	,q),	in kcal	mol	⁻¹ at	298 K.	

Process ^a		ΔG°	
$MeBr(aq) \rightarrow MeBr(g)$			1 ^b
$MeBr(g) \rightarrow Me \cdot (g) + Br \cdot (g)$	• •		$+61^{\circ}$
$Me \cdot (g) \rightarrow Me^+(g)$	••	••	$+227^{d}$
$\operatorname{Br}(g) \to \operatorname{Br}(g)$	••		-81e
$Me^+(g) \rightarrow Me^+(aq)$	• •		— 73 ^r
$Br^{-}(g) \rightarrow Br^{-}(aq)$.	• •		-68^{f}
$Me^+(aq) + Br^-(aq) \rightarrow Me^+$	Br−(a	ιq)	$+1^{g}$
$MeBr(aq) \rightarrow Me^+Br^-(aq)$	••	••	+66

^a Standard states are $1 \operatorname{atm}(g)$ and $1 \operatorname{mol} 1^{-1}(\operatorname{aq})$. ^b D. M. Alexander, D. J. T. Hill, and L. R. White, Austral. J. Chem., 1971, 24, 1143. ^c From $\Delta H^{\circ} = 70 \operatorname{kcal} \operatorname{mol}^{-1}$, J. A. Kerr, Chem., Rev., 1966, 66, 465, and $\Delta S^{\circ} = 29 \operatorname{cal} \operatorname{K}^{-1} \operatorname{mol}^{-1} \operatorname{calculated}$ from standard entropies of formation. ^a From $\Delta H^{\circ} = 226.9 \operatorname{kcal} \operatorname{mol}^{-1}$, F. P. Lossing and G. P. Semeluk, Canad. J. Chem., 1970, 48, 955, together with $\Delta S^{\circ} = -1.4 \operatorname{cal} \operatorname{K}^{-1} \operatorname{mol}^{-1}$. ^e From $\Delta H^{\circ} = -82.0 \operatorname{kcal} \operatorname{mol}^{-1}$, J. C. McCoubrey, Trans. Faraday Soc., 1955, 51, 743 together with $\Delta S^{\circ} = -1.4 \operatorname{cal} \operatorname{K}^{-1} \operatorname{mol}^{-1}$. ^t Footnote e and R. M. Noyes, J. Amer. Chem. Soc., 1962, 84, 513; the value for Me⁺ has been calculated from a plot of $\Delta G^{\circ}_{\rm Byd}$ against the molar volume of the cations. ^g Compare a $K_{\rm A}$ value of 0.14-(CsBr), E. M. Hanna, A. D. Pethybridge, and J. E. Prue, Electrochim. Acta, 1971, 16, 677.

In Table 1 is a calculation of the standard free-energy change for reaction (1) (RX = MeBr) in aqueous solution, and in Table 2 are presented results of calculations for a series of alkyl bromides (values of ΔG° for the corresponding chlorides and iodides are quite similar). Although the calculated ΔG_1° values are subject to an error that could be as much as $\pm 5 \text{ kcal mol}^{-1}$, these calculated values for the primary alkyl halides are so much larger than values of ΔG_{obs}^{\sharp} for the aqueous hydrolyses that it seems energetically quite improbable that simple primary halides hydrolyse (or undergo any S_N reaction) by the ion-pair mechanism. Judging from the data in Table 2, the ion-pair mechanism is slightly unfavourable for S_N reactions of simple secondary halides, though for other secondary substrates the reverse might hold. For the t-butyl halides $\Delta G_{obs}^{\sharp} > \Delta G_1^{\circ}$ so that the ion-pair mechanism is energetically feasible. In these cases it has been suggested⁶ that $\Delta G_{obs}^{\ddagger} = \Delta G_1^{\ddagger}$; the mechanism still demands, however, that $\Delta G_{obs}^{\ddagger} > \Delta G_1^{\circ}$, as observed (Table 2).

It should be noted that the final step in the calculation (Table 1) refers to association of a pair of ions to closed ionTABLE 2. Comparison of ΔG° for reaction (1) with $\Delta G_{obs}^{\ddagger}$ for the aqueous hydrolysis of alkyl halides, in kcal mol-1 at 298 K.

	$\mathbf{R}\mathbf{X}$					
	MeBr	EtBr	Pr ⁱ Br	Bu ^t Br		
ΔG_1^{o}	66	43	28	12		
$\Delta G_{obs}^{\ddagger}$	26^{a}	26ª	25^{a}	18 ^b		

^a R. E. Robertson, Progr. Phys. Org. Chem., 1967, 4, 213. ^b E. A. Moelwyn-Hughes, J. Chem. Soc., 1962, 4301.

pairs plus solvent-separated ion-pairs. If the closed ionpair⁴ is only a fraction of the total, then the ΔG^0 value for association to a closed ion-pair will be more positive than the value tabulated $(+1 \text{ kcal mol}^{-1})$. Hence the calculated value of ΔG_1° will be more positive and the discrepancies between ΔG_1° and $\Delta G_{obs}^{\ddagger}$ for primary alkyl halides (Table 2) will be even larger.

(Received, 27th October 1972; Com. 1824.)

¹ R. A. Sneen and J. W. Larsen, J. Amer. Chem. Soc., 1969, 91, 362, 6031.
² J. L. Kurz and J. C. Harris, J. Amer. Chem. Soc., 1970, 92, 4117; B. J. Gregory, G. Kohnstam, A. Queen, and D. J. Reid, Chem. Comm., 1971, 797; M. H. Abraham, J. Chem. Soc. (B), 1971, 299.
⁸ B. J. Gregory, G. Kohnstam, M. Paddon-Row, and A. Queen, Chem. Comm., 1970, 1032; D. J. Raber, J. M. Harris, R. E. Hall, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1971, 93, 4821.
⁴ J. M. W. Scott, Canad. J. Chem., 1970, 48, 3807; see also J. M. W. Scott and R. E. Robertson, *ibid.*, 1972, 50, 167.
⁶ M. H. Abraham, M. C. S. Peerkin, IL 1072, 1242.

⁶ M. H. Abraham, J.C.S. Perkin II, 1972, 1343.