Absorption Spectrum and Reaction Kinetics of the Photoreactive State of the Uranyl Ion

By DAVID M. ALLEN, HUGH D. BURROWS, ALAN COX, RICHARD J. HILL, TERENCE J. KEMP,* and THOMAS J. STONE (Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL)

Summary μ s and ns excitation of aqueous solutions of uranyl salts produces a short-lived absorption (t_1 ca. 1.05 μ s) which is systematically quenched on addition of a variety of organic substrates known to photoreduce UO_2^{2+} ion; the isotope effect of 2.76 obtained with CH₃OH and CD₃OH exactly matches that found for quenching of the *fluorescence* of UO_2^{2+} by these substrates, and absolute rate constants have been determined for some photoreactions of UO_2^{2+} for the first time.

SUGGESTED mechanisms of photo-oxidation by UO_2^{2+} have been based largely on product and quantum yield determinations¹ and fluorescence quenching studies.^{2,3} The most recent investigations^{2,3} have indicated that these data are interdependent and the quenching of uranyl ion fluorescence is chemical in nature, occurring by a photo-redox process, reaction (1), at least in the case of aliphatic substrates. This view has been supported by e.s.r. identification of CR^1R^2 ·OH following the instigation of (1) in matrices

$$R^{1}R^{2}CHOH + U^{VI*} \xrightarrow{H_{2}O} R^{1}R^{2} \cdot COH + U^{V} + H_{3}O^{+}$$
(1)

at 77K,⁴ although Ledwith *et al.*⁵ have succeeded in spintrapping CH₃O· in the photo-oxidation of CH₃OH by $(UO_2^{3+})^*$.

Flash photolysis of 2×10^{-2} M uranyl perchlorate and nitrate in water, using either a ruby-doubled laser (λ 347·1 nm, flash duration *ca*. 50 ns) or a conventional μ s apparatus (flash duration *ca*. 30 μ s, 550 J) produced the absorptions shown in the Figure (A) with λ_{max} *ca*. 590 \pm 10 nm. The

FIGURE (A). Flash photolysis spectra of aqueous solutions of uranyl salts. Full line—spectrographic recording of absorption from 2×10^{-2M} uranyl perchlorate following μs flash; \times —photoelectrically recorded absorptions on laser flashing 2×10^{-2M} uranyl perchlorate, +—analogous experiments with uranyl nitrate. (B).O—Pseudo first-order rate constants for disappearance of 590 nm transient on laser flash photolysis of aqueous uranyl perchlorate (0.2M) in the presence of CH₃OH, Δ —analogous data for CD₃OH; **•**, Δ —Stern-Volmer plots for the quenching of uranyl ion luminescence by CH₃OH and CD₃OH respectively in aqueous solution.

decay in water could be monitored only in the case of the laser flash experiment, *i.e.* with $t_1 = 1.05 \,\mu s$, $k = 6.57 \,\times$ 10^{5} s⁻¹ for five half-lives, but in concentrated sulphuric acid k was found to be $7.6 \times 10^3 \,\mathrm{s^{-1}}$ in conformity with the increased fluorescence lifetime in this medium, $k_{\rm F} = 7.1 \times$ 10³ s^{-1.6} Systematic addition of a number of organic substrates to aqueous uranyl perchlorate (0.2 M) increased the decay rate of the 590 nm transient and with CH₃OH and CD_3OH in particular, it was possible to ascertain absolute rate constants for the quenching process with some precision, yielding $k_{\rm H} = (6\cdot40 \pm 0\cdot08) \times 10^6$, $k_{\rm D} = (2\cdot32)$ ± 0.10 × 10⁶ l mol⁻¹ s⁻¹ and $k_{\rm H}/k_{\rm D} = 2.76 \pm 0.08$. The isotope effect was found to match almost exactly that found for the Stern-Volmer quenching of the fluorescence of the uranyl ion (k^{sv}) by the same substrates under identical reaction conditions, i.e. $k_{\rm H}^{\rm SV}/k_{\rm D}^{\rm SV}=2.76\pm0.06$ (Figure). Other approximate values of quenching constants $(k_2/10^6 \ l \ mol^{-1} \ s^{-1})$ are: acetic acid (unbuffered) 9.3, acetic acid (pH 5) 4.9, lactic acid (pH 1.5) 9.8, ethanol 42, and H₂PO₂- 31.

The shortening of the lifetime of the 590 nm transient by added substrates corresponds to photochemical reaction, *i.e.* the state responsible for the absorption is both the photoreactive state of UO_2^{2+} and is that from which emission occurs. No kinetic data for the emission have been recorded in the literature for UO_2^{2+} in pure water (as opposed to H_2SO_4 and $H_2SO_4-H_2O$ media) but t_1 is estimated as $< 10 \,\mu s^{\gamma}$ and our preliminary results from single photon counting experiments indicate k_1 ca. 4.7×10^5 s⁻¹. The data with CH₃OH and CD₃OH imply that attack upon a C-H bond by $(UO_2^{2+})^*$ is the principal route of photooxidation of methanol in solution.

We thank the photochemistry groups at the Royal Institution and the University of East Anglia for assistance with the laser flash photolysis and single photon counting experiments. (Received, 6th December 1972; Com. 2034.)

- ¹ E. Rabinowitch and R. L. Belford, 'Spectroscopy and Photochemistry of Uranyl Compounds,' Pergamon, London, 1964.
 ² S. Sakuraba and R. Matsushima, Bull. Chem. Soc. Japan, 1970, 43, 2539.
 ³ R. Matsushima and S. Sakuraba, J. Amer. Chem. Soc., 1971, 93, 5421.
 ⁴ D. D. M. W. T. J. W. T. J

- ⁴ D. Greatorex, R. J. Hill, T. J. Kemp, and T. J. Stone, J.C.S. Faraday I, 1972, 68, 2059. ⁵ A. Ledwith, P. J. Russell, and L. H. Sutcliffe, Chem. Comm., 1971, 964.
- ⁶ F. Perrin and R. Delorme, Compt. rend., 1928, 186, 428.
- ⁷ Ref. 1, p. 213.