Journal of

The Chemical Society, Chemical Communications

NUMBER 3/1973

7 FEBRUARY

cis-Activation by the Nitrato-ligand in Amminechromium(III) Ions

By GIOVANNI GUASTALLA and THOMAS W. SWADDLE*

(Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4)

Summary Nitrato-ligands in Cr^{III} ammines strongly accelerate the aquation of NH_3 ligands in the *cis*-positions.

We have found, by use of cation-exchange chromatography and specific NH₄⁺ and NO₃⁻⁻ ion electrodes, that the spontaneous thermal aquation of $Cr(NH_3)_5NO_3^{2+}$ ion in 0·1M-NH₄ClO₄ (pH 6) at 25° yields 100 \pm 5% of NO₃⁻⁻ as expected, but only 34% of $Cr(NH_3)_5OH^{2+}$; the other products are NH₄⁺ (100 \pm 10%), *cis*-Cr(NH₃)₄(OH)OH₂²⁺ (35%) (but none of the *trans*-isomer), and a mixture of *fac*- and *mer*-Cr(NH₃)₃-(OH)₂OH₂⁺.

The spectrum (260-700 nm) of the $Cr(NH_3)_5NO_3^{2+}$ solution changed during aquation in accordance with the formation of these products; isosbestic points were precisely maintained, and the rate of change of optical absorbance at 275, 400, and 560 nm showed that the rate of disappearance of $Cr(NH_3)_5NO_3^{2+}$ was accurately first-order in $[Cr(NH_3)_5-NO_3^{2+}]$, with rate coefficient $k(NO_3) = (2\cdot4 \pm 0\cdot1) \times 10^{-3}$ s⁻¹. The rates of formation of free NO_3^- and NH_4^+ ions yielded this same rate coefficient, within the experimental uncertainty. The pH remained constant at *ca*. 6 because acidic aquo-ligands were being introduced concomitantly with NH₃ release.

The complexes $Cr(NH_3)_5OH_2^{2+}$ and cis- $Cr(NH_3)_4(OH)$ -OH₂²⁺ were found not to aquate significantly in 0·1Mperchlorate media (pH 6) at 25° over a period greater than 10 half-lives of the $Cr(NH_3)_5NO_3^{2+}$ aquation (and were not significantly affected by our ion-exchange procedure), while the aquations of $Cr(NH_3)_5Br^{2+}$ and $Cr(NH_3)_5I^{2+}$ yield *exclusively* $Cr(NH_3)_5OH^{2+}$ and halide ion under comparable conditions over even longer periods.^{1,2} Thus, the observed characteristics of the aquation of $Cr(NH_3)_5NO_3^{2+}$ constitute clear evidence for a strong activation of ligands *cis* to a nitrato-ligand in Cr^{III} complexes. The aquations of $Cr(NH_3)_5F^{2+}$ and $Cr(NH_3)_5Cl^{2+}$ do involve some ammonia release,³ but this is because the rates of replacement of F and Cl by H₂O are comparable with the rate of ammonia aquation of, *e.g.*, Cr(NH₃)₆³⁺ to Cr(NH₃)₅OH₂³⁺ ($k = 8 \times 10^{-5} \text{ s}^{-1} \text{ at } 75^{\circ} \text{ in } 0.5 \text{ m-HClO}_4$ for all six ammine ligands)⁴ and not because of activation by F or Cl.

These observations are consistent with the following Scheme, in which $k_1 = 0.8 \times 10^{-3} \text{ s}^{-1}$, $k_2 = 1.6 \times 10^{-3} \text{ s}^{-1}$, and k_3 , k_4 , and k_5 are assumed to be high (with k_3/k_4 ca. 1.1); this assumption is consistent with the observation⁵ that a pathway with inverse [H⁺] dependence is detectable in the aquation of Cr(H₂O)₅NO₃²⁺ even in the pH range 0—1.

$$\begin{array}{c} \operatorname{Cr}(\mathrm{NH}_{3})_{5}\mathrm{NO}_{3}^{2+} + \mathrm{H}_{2}\mathrm{O} \xrightarrow{h_{1}} \mathrm{NO}_{3}^{-} + \operatorname{Cr}(\mathrm{NH}_{3})_{5}\mathrm{OH}_{2}^{3+} \xrightarrow{\mathrm{pH } 6} \\ \downarrow k_{2} & \operatorname{Cr}(\mathrm{NH}_{3})_{5}\mathrm{OH}^{2+} \\ \mathrm{NH}_{3} + \operatorname{cis-Cr}(\mathrm{NH}_{3})_{4}(\mathrm{OH}_{2})\mathrm{NO}_{3}^{2+} \\ \uparrow \downarrow K \text{ (fast)} \\ \mathrm{NH}_{4}^{+} + \operatorname{cis-Cr}(\mathrm{NH}_{3})_{4}(\mathrm{OH})\mathrm{NO}_{3}^{+} \xrightarrow{h_{3}} \operatorname{cis-Cr}(\mathrm{NH}_{3})_{4}^{-} \\ + \mathrm{H}_{2}\mathrm{O} \downarrow k_{4} & \operatorname{cis-Cr}(\mathrm{NH}_{3})_{4}^{-} \\ \mathrm{Cr}(\mathrm{NH}_{3})_{3}(\mathrm{OH})_{2}\mathrm{NO}_{3}^{0} + \mathrm{NH}_{4}^{+} \\ + \mathrm{H}_{2}\mathrm{O} \downarrow k_{5} \\ \mathrm{Cr}(\mathrm{NH}_{3})_{3}(\mathrm{OH})_{2}\mathrm{OH}_{2}^{+} + \mathrm{NO}_{3}^{+} \end{array}$$

At pH 6, the equilibrium K will lie almost entirely toward the presumably labile ion cis-Cr(NH₃)₄(OH)NO₃⁺ (pK_a estimated to be ca. 5—6), and the rate of aquation of Cr(NH₃)₅NO₃²⁺ will be controlled by k_1 and k_2 alone and is therefore cleanly first-order. However, in 0·1M-HClO₄, cis-Cr(NH₃)₄(OH)NO₃⁺ formation will be greatly suppressed, and the slow step k_2 should be followed by the further *slow* aquation of cis-Cr(NH₃)₄(OH₂)NO₃²⁺ to cis-Cr(NH₃)₄(OH₂)₂³⁺ and $Cr(NH_3)_3(NO_3)(OH_2)_2^{2+}$, if *cis*-activation by the nitratoligand is again operative; the last-named species should in turn slowly yield Cr(NH₃)₃(OH₂)₃³⁺ isomers. Indeed, we observed that the products of the aquation at pH 1 were essentially the same as at pH 6, but isosbestic points were not maintained, and the spectrophotometric reaction rate was slower overall and not first-order, being instead indicative of a series of at least two consecutive slow reactions operating concurrently with the process k_1 , exactly as the above Scheme requires. Our results confirm and explain Monacelli's observations⁶ that the spectrophotometric rate of disappearance of Cr(NH₃)₅NO₃²⁺ is depressed by increasing [H+] and deviates considerably from first-order in [Cr- $(NH_3)_5NO_3^{2+}$ at high acidities.

We believe that simple substitutions at Cr^{III} centres occur by associative $(I_a \text{ or } S_N 2)$ mechanisms,¹ and therefore suggest that the stereospecific expulsion of *cis*-ligands by

the nitrato-group in CrIII complexes may occur via an associative ring-closure process leading to a transiently bidentate nitrato-complex. This could operate equally well with other potentially bidentate ligands such as sulphate, sulphite, carbonate, nitrite, or carboxylate. Thus, we have an explanation for numerous apparent anomalies in Cr^{III} co-ordination chemistry, such as labilization by the nitrito-ligand⁷ and by carboxylate.⁸ Similarly, the marked acceleration of the rate of decomposition of CrIII ammines in aqueous nitrate,^{9,10} sulphate⁹ and sulphite⁴ media vis-à-vis perchlorate or halide solutions^{4,9} can be understood in terms of the formation of small amounts of the oxyanionocomplexes (perchlorate excepted, being a poor complexing agent); significantly, attempts to isolate salts of Cr(NH₃)₅- SO_4^+ have so far failed.⁴

We thank the National Research Council of Canada for financial support.

(Received, 23rd October 1972; Com. 1796.)

- ¹G. Guastalla and T. W. Swaddle, Canad. J. Chem., in the press.
- ² M. A. Levine, T. P. Jones, W. E. Harris, and W. J. Wallace, J. Amer. Chem. Soc., 1961, 83, 2453.
- ² T. P. Jones and J. K. Phillips, *J. Chem. Soc.* (A), 1968, 674; A. Rogers and P. J. Staples, *J. Chem. Soc.*, 1965, 6834. ⁴ G. Guastalla and T. W. Swaddle, unpublished observations.
- ⁵ T. W. Swaddle, J. Amer. Chem. Soc., 1967, 89, 4338; M. Ardon and N. Sutin, Inorg. Chem., 1967, 6, 2268.
- ⁶ F. Monacelli, Ricerca Sci., 1967, 37, 781.
- ⁷ T. C. Matts and P. Moore, J. Chem. Soc. (A), 1971, 1632.
 ⁸ E. Zinato, C. Furlani, G. Lanna, and P. Riccieri, Inorg. Chem., 1972, 11, 1746.
- N. V. Duffy and J. E. Earley, J. Amer. Chem. Soc., 1967, 89, 272.
 J. H. Espenson and D. W. Carlyle, Inorg. Chem., 1966, 5, 586; J. Bjerrum and E. Jørgensen, Acta Chem. Scand., 1958, 12, 1047.