
Determination of the Structure of Stipitalide, a New Tropolone from *Penicillium stipitatum* Thom

By MIROSLAV HOLÍK* and IVO KUHR

(Research Institute of Pure Chemicals, Lachema, Brno and Research Institute of Veterinary Medicine, Brno, Czechoslovakia)

Summary The structure of 6-hydroxy-4-hydroxymethyltropolone-5-carboxylic acid γ -lactone was established for a new tropolone metabolite.

SEVERAL years ago three fungal tropolones of *Penicillium* stipitatum Thom were discovered: stipitatic acid (I),¹ stipitatonic acid (II),² and ethyl stipitate.³ Now, a new tropolone derivative, stipitalide (III), has been isolated.⁴ Similar γ -lactone-ring compounds were found in some fungal and lichen metabolites.⁵

It is believed that stipitalide is a precursor of stipitatonic acid in its biosynthesis via 3-methylorsellinic acid⁶. The

amount of stipitalide in the filtrate of a shaken culture of P. stipitatum CBS is greatest after 72—92 h of cultivation while the maximum yields of stipitatonic acid were obtained after 92—120 h. Detailed experimental conditions and the isolation of (III) are described elsewhere.⁴

TABLE.	N.m.r.	signals (of the tro	bolones	(I)(I)	(III)	$(\tau)^{a}$
		516110			(~)	/	· · /

	7-H	3-H	5-H	CH_2
(I)	3.17 d	2.68 d	$2.58 \mathrm{dd}$	
(II)	$(2.5)^{b}$ 3.21 s	(1·5) ^b 3·05 s	(2·5; 1·5) ^b	
(11)	(1·4)°	(1·5)°		
(III)	3 ∙18 s	3 ∙1 3 s		4 ∙74 s
	(1·7)°	$(2 \cdot 5)^{c}$		$(2 \cdot 2)^{c}$

^a In $(CD_3)_2SO$ against Me₄Si internal standard; ^b long-range coupling constant ⁴J in Hz; ^c line width at half height, w_1 , in Hz.

Besides the distinct bands characteristic for tropolones⁷ (1260, 1560, and 1622 cm⁻¹) the i.r. spectrum of stipitalide shows an additional carbonyl absorption at 1717 cm⁻¹. The m.s. reveals M 194 and the molecular formula $C_9H_6O_5$. Also the mass spectral fragmentation with loss of three CO

groups, confirmed by the presence of the corresponding metastable ions, testifies to the structure of a carbonylsubstituted tropolone.

The structural relationship of stipitalide to stipitatonic and stipitatic acids was also confirmed by n.m.r. spectroscopy (see Table). 3-H and 7-H in compounds (I)-(III) do not show any observable mutual spin-spin coupling and the chemical shift of 7-H is nearly the same for all three. Therefore the mutual position of 7-H and 3-H in the ring must be the same in (I)-(III) and the structures differ only in the surroundings of the 3-H proton. The carboxy-group in (I) decreases the chemical shift of 3-H while the alkyl group in (III) has the opposite effect. The observed

chemical shift of the methylene group of (III), τ 4.74, compares favourably with that calculated from the Schoolery rule, τ 4.81. The 3-H and CH₂ singlets are broadened $(w_{4} = 2.5 \text{ and } 2.2 \text{ Hz}, \text{ respectively})$ due to long range coupling. Double resonance involving irradiation of the methylene signal causes narrowing of the 3-H singlet $(w_{t} = 1.7 \text{ Hz})$ and enhancement of its amplitude, while the 7-H signal remains unchanged. In this manner the other possible isomer of stipitalide, 6-hydroxy-5-hydroxymethyltropolone-4-carboxylic acid γ -lactone, can be excluded.

(Received, 6th November 1972; Com. 1866.)

- J. H. Birkinshaw, A. R. Chambers, and H. Raistrick, Biochem. J., 1942, 36, 242.
- ² W. Segal, J. Chem. Soc., 1959, 2847. ⁸ P. V. Divekar, P. E. Brenneisen, and S. W. Tanenbaum, Biochim. Biophys. Acta, 1961, 50, 588.

- ⁴ I. Kuhr and J. Fuska, Appl. Microbiol., in the press.
 ⁵ W. B. Turner 'Fungal Metabolites,' Academic Press, London, 1971.
 ⁶ A. I. Scott, H. Guilford, and E. Lee, J. Amer. Chem. Soc., 1971, 93, 3534 and references therein.
- ⁷G. Aulin-Erdtman and H. Theorell, Acta Chem. Scand., 1950, 4, 1490.