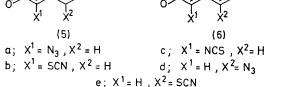
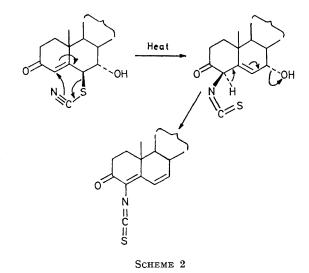

Efficient Synthesis and Mechanisms of Formation of 4-Azido-, 4-Thiocyanato-, and 4-Isothiocyanato-3- ∞ o- Δ ^{4,6}-steroids


By H. L. HERZOG, J. KORPI, E. L. SHAPIRO,* G. TEUTSCH, and L. WEBER

(Schering Corporation, 86 Orange Street, Bloomfield, New Jersey 07003)

Summary Processes for the preparation of 4-azido-, 4-thiocyanato-, and 4-isothiocyanato-3- ∞ o- Δ ^{4,6}-steroids are presented; possible mechanisms of formation are suggested.

In view of the potentiating effect of 6-halogeno-substitution on progestational activities, we have sought the corresponding 6-pseudohalogeno-derivatives.¹



Reaction of the 6β -bromo-7 α -acetoxy-progestin $(1a)^1$ [or its C₁₉ counterpart (2a)]^{2b} with NaN₃ in DMF or DMSO at 25° for 3 h surprisingly† gave the 4-azido- $\Delta^{4,6}$ -product (4a)

[or (5a)][‡] (ca. 60%). In each case a small amount of the isomeric 6-azide [(4d) or (5d), respectively] was also formed.§ Thermally induced allylic rearrangement (60°) of the 6β -azido-7 α -acetoxy-compound (1c) [or (1b)] in DMF or dioxan also yielded the 4-azido- $\Delta^{4,6}$ -product (4a)

Similarly, (1a) [or (2a)] afforded only the 4-thiocyanato- $\Delta^{4,6}$ -product (4b) [or (5b)] in 75-85% yield from reaction with KSCN in DMF for 2-4 days at 25°. The corresponding 4-isothiocyanate (4c) [or (5c)] was prepared in good yield by the thermally induced allylic rearrangement of the 6β -thiocyanate (1d) [or (2d)]^{2b,5} in DMF, benzene, or

† Ref. 3 reports a 6α -azido-3-oxo- Δ^4 -steroid, obtained from the 6β -bromo-analogue with azide ion, and a similar transformation has been effected by H. Reimann of these laboratories.

‡ Satisfactory analytical and spectral data have been obtained for all new compounds.

§ Refs. 2 and 4 report the preparation of 6-azido-3-oxo- $\Delta^{4,6}$ -steroids by other processes.

toluene. The mode of attachment (through S or N) at C-4 was assigned, apparently unambiguously, by i.r. analysis.6

The results obtained with the asymmetric triatomic unit in the thiocyanate-isothiocyanate series appear to define unambiguously the pathway of reaction of (1a) with nucleophiles N_3^{-1} and SCN^{-1} . (See Scheme 1).

This follows since the 4-thiocyanate cannot arise out of 6-thiocyanate by thermally induced allylic rearrangement by the presently understood mechanism (Scheme 2). This presumption was tested for the azido-series by exposing the 6β -azido-7 α -acetoxy compound (1c) (the hypothetical intermediate in the neighbouring group-assisted displacement of the 6β -bromo-substituent by azide ion) to the reaction conditions under which (4a) had been formed from (1a). The 6-azido- Δ^{6} -product (4d) (11%) but no (4a) was formed

thereby establishing that allylic rearrangement is not a significant pathway to (4a) under these conditions (25°C). However, 6β -azido-7 α -acetoxy-compounds cannot be excluded as intermediates in the formation of the 6-azido- $\Delta^{4,6}$ products [(4d) and (5d)] from the corresponding 6β bromides.

In summary, the 4-substituted products reported here which were derived from (1a) [and (2a)] arise by $S_N 2'$ attack of the nucleophile (regiospecifically directed by the 7α -acetate) and those which were derived from (1b-d) [or (2d)], arise by $S_N i'$ rearrangement.

Application of these findings to the corticoid series has also afforded (6a) and (6b) from (3).

(Received, 23rd October 1972; Com. 1799.)

¹ E. L. Shapiro, L. Weber, H. Harris, C. Miskowicz, R. Neri, and H. L. Herzog, J. Medicin. Chem., 1972, 15, 716, and references therein cited.

² (a) Belg. P. 770,378 (1972); (b) G. Teutsch, L. Weber, G. Page, E. L. Shapiro, and H. L. Herzog, in preparation.

^aK. Ponsold and G. Schubert, J. prakt. Chem., 1969, **311**, 445. ^aG. Drefahl, K. Ponsold, and G. Schubert, J. prakt. Chem., 1969, **311**, 919.

⁵ (a) K. Ponsold and G. Schubert, Z. Chem., 1968, 8, 465, have reported the 16-demethylene analogue of (1d); (b) E. L. Shapiro, U.S.P. 3,673,233 (1972).

⁶ L. Luskin, G. E. Gantert, and W. E. Craig, J. Amer. Chem. Soc., 1956, 78, 4965.