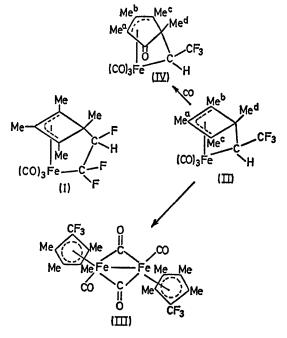
A Formal Insertion Reaction of Tricarbonyl-π-tetramethylcyclobutadieneiron with 1,1,1-Trifluoroethylidene; Ring-expansion Reactions of π-Cyclobutenyliron Complexes

By ALAN BOND, MICHAEL GREEN,* and SUSAN H. TAYLOR (Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)


Summary U.v. irradiation of $[Fe(CO)_3\pi$ -C₄Me₄] with C_2F_3H affords as one of the products an adduct (II) containing a bridging CH(CF₃) group; thermolysis of (II) leads to C₄ to C₅ ring-expansion reactions with the formation of $[Fe(CO)_2\pi$ -C₅Me₄CF₃]₂ and a ketonic C₅ π -allylic complex.

The second and more unusual product (20%), complex (II), m.p. 100°, showed ¹H n.m.r. resonances at τ 8·12 (3H, s, Me^a), 8·14 (6H, s, Me^b and Me^c), 9·16 (3H, s, Me^d), and 10·2 [1H q, $J(H-CF_3)$ 12·0Hz] and a single ¹⁹F n.m.r. doublet resonance at 55.7 [d, $J(CF_3-H)$ 12.0 Hz] suggesting the presence of a methyl-substituted π -cyclobutenyl system, and also a CH(CF₃) group σ -bonded to the iron atom and C₄ ring. The structure (II) is consistent with preliminary X-ray crystallographic studies.² The formation of (II), therefore, involves an unusual insertion of 1,1,1-trifluoroethylidene.

When (II) is heated (100°, 6 h) in hexane, red-black needles of a dinuclear complex (III) (28%) are obtained, m.p. 250°, which from the mass spectrum, i.r., ¹H n.m.r. [τ 8·13 (6H, s), 8·39 (6H, s)], and ¹⁹F n.m.r. [singlet resonance at 52·0] is formulated as a C₅ ring substituted π -cyclopentadienyliron dicarbonyl dimer. There is no precedent for a ring expansion reaction of this kind, in which hydrogen is lost. However, Herberich and his co-workers have demonstrated³ five- to six-membered ring enlargement reactions in π -cyclopentadienylcobalt chemistry. A plausible reaction path from (II) and (III) would involve migration of hydrogen from the trifluoromethyl substituted carbon on to iron with concomitant ring enlargement *via* a 1,2-shift. The resultant

† Satisfactory elemental analyses and mass spectra were obtained for all compounds.

TRIFLUOROETHYLENE reacts with tricarbonyltetramethylcyclobutadieneiron in hexane on u.v. irradiation to form two products, which proved[†] to be isomeric 1:1 adducts. One of these, m.p. 120°, was assigned structure (I) on the basis of i.r. and ¹H and ¹⁹F n.m.r. spectra. In forming (I) trifluoroethylene has inserted sterespecifically, a reaction which is analogous to the previously observed¹ insertion of tetrafluoroethylene.

hydride species [FeH(CO)₂ π -C₅Me₄CF₃)] would by analogy with cyclopentadienyliron chemistry⁴ be expected to lose hydrogen and dimerise.

A second product of the thermolysis reaction is complex (IV), m.p. 105-106°, which could be obtained in higher (80%) yield by reaction of (II) with carbon monoxide (100 atm, 80 °C). Elemental analysis and mass spectroscopy confirmed the introduction of one mole of carbon monoxide as indicated by the presence in the i.r. of a band at 1731m cm⁻¹. The ¹H n.m.r. spectrum showed resonances at τ 7.82 (3H, s, Me^b), 8.01 (3H, s, Me^a), 8.15 (3H, s, Me^c), 9.08 (3H, q, Med), and 10.14 [1H, q, J(H-CF₃) 13.0 Hz], and the ¹⁹F spectrum a resonance at 53.9 [3F, d of q, $J(CF_3-H)$ 13.0, $J(CF_3-Me)$ 1.5 Hz]. Since complex (IV) is stable to carbon monoxide during its formation this eliminates structures involving a 1,3-diene bonded to $Fe(CO)_3$. On heating, (IV) does not decarbonylate or transform into (III). The formation of (IV) can be understood as involving insertion of carbon monoxide into the π -allylic portion of (II) followed by a ring enlargement; the $Fe(CO)_3 \sigma$ -bonded to the [CH- (CF_3)] group stabilising the resultant C_5 ring.

(Received, 6th December 1972; Com. 2036.)

¹ A. Bond and M. Green, *J.C.S. Dalton*, 1972, 763. ² J. A. Howard, R. A. Marsh, and P. Woodward, personal communication.

⁸G. E. Herberich, G. Greiss, and H. F. Heil, J. Organometallic Chem., 1970, 22, 723; G. E. Herberich and R. Michelbrink, Chem. Ber., 1970, 103, 3615.

⁴ P. L. Pauson, Proc. Chem. Soc., 1960, 297; R. K. Kochhar and R. Pettit, J. Organometallic Chem., 1966, 6, 272.