Stable Silylmethyl and Neopentyl Complexes of Scandium(III) and Yttrium(III)

By Michael F. Lappert* and Ronald Pearce (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The complexes $(Me_3M'CH_2)_3M\cdot 2THF$ (M = Scor Y; M' = C or Si) and $(o-MeOC_6H_4SiMe_2CH_2)_3Sc$ have been isolated from the reaction of the appropriate lithium reagent with MCl₃ or MCl₃·nTHF.

There are no well-defined binary alkyls of the lanthanides.1 The reactions of the Group IIIA trichlorides, MCl₃ (M = Sc, Y, La), with methyl-lithium have been investigated but the products [Me₃M], could not be freed from lithium or chloride impurities.2 A sterically-crowded tetra-aryl-lanthanide complex $[Li(THF)_4][Lu(C_6H_3Me_2-2,6)_4]$, has recently been characterised.3

We have prepared trimethylsilylmethyl and neopentyl complexes of scandium and yttrium, (Me₃M'CH₂)₃M·2THF (M = Sc or Y; M' = C or Si) by reaction of the appropriate lithium reagent with either the anhydrous metal chloride in hexane-ether-tetrahydrofuran (THF), or MCl₃·nTHF in hexane-ether mixtures at ca. 0°. The complexes were obtained as analytically-pure, air-sensitive, colourless, crystals (X-ray studies are in hand) from n-pentane (Table). In the ¹H n.m.r. spectra, the methylene hydrogens of the yttrium complexes show coupling with 89Y; yttrium is a rare example of a monoisotopic element having nuclear spin $I=\frac{1}{2}$.

The n.m.r. data are consistent with a trigonal bipyramidal arrangement of ligands around the metal, the THF molecules occupying axial sites. The unusual five-co-ordination may be favoured by the rather bulky Me₃SiCH₂ ligands.

TABLE. Scandium and yttrium alkyls

		$\nu(MC_3)$	$N.m.r. (\tau)^b$	
Compound	M.p.	cm^{-1a}	CH_2	М́е
(Me ₃ CCH ₂) ₃ Sc·2THFe	$66-68^{\circ}$	515	9.38	8.63
(Me ₃ SiCH ₂) ₃ Sc·2THF ^c	6263°	450	10.27	9.72
(Me ₃ CCH ₂) ₃ Y·2THFc	$78-79^{\circ}$	490	10.07^{d}	8.68
(Me ₃ SiCH ₂) ₃ Y·2THFc	$48-50^{\circ}$	410	10.65^{d}	9.65
$(o-MeOC_6H_4SiMe_2CH_2)_3Sc$	$115-120^{\circ}$	480	9.92	9.45
	(decomp	o.)		

a Broad bands [cf., 470 cm⁻¹ in (Me₃SiCH₂)₄Ti, M. R. Collier, M. F. Lappert, and R. Pearce, *J.C.S. Dalton*, 1973, in the press]; $^{\rm b}$ in ${\rm C_6H_6}$ (2·73 $_{\rm 7}$); $^{\rm c}$ v(C–O–C), 1020—1025 cm⁻¹ (sharp) $^{\rm d}$ doublet, $J(^{\rm 89}{\rm YCH^1H})$ 2·5 Hz.

The co-ordinated THF could not be removed in vacuo, but by the use of the more bulky, and possibly chelating, ligand o-MeOC₆H₄SiMe₂CH₂-, we have obtained a THF-free complex (o-MeOC₆H₄SiMe₂CH₂)₃Sc (Table).

We thank Dr. D. G. H. Ballard and the Corporate laboratory, I.C.I. Ltd., for their support.

(Received, 15th December 1972; Com. 2095.)

¹ H. Gyslin and M. Tsutsui, Adv. Organometallic Chem., 1970, 9, 361; R. G. Hayes and J. L. Thomas, Organometallic Chem. Rev., 1971, 7A, 361.
² F. A. Hart, A. G. Massey, and M. S. Saran, J. Organometallic Chem., 1970, 21, 147.

³ S. A. Cotton, F. A. Hart, M. B. Hursthouse, and A. J. Welch, J.C.S. Chem. Comm., 1972, 1225.