Crystal Structure of [Xe₂F₁₁]⁺[AuF₆]

By KEVIN LEARY, ALLAN ZALKIN, and NEIL BARTLETT*

(Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720)

Summary The crystal structure of $[Xe_{2}F_{11}]^{+}[AuF_{6}]^{-}$ shows the anion to be essentially octahedral and the cation to be approximately two XeF_{5}^{+} ions linked by a fluoride ion.

RECENTLY we reported¹ the novel oxidation state (+5) of gold. We have now solved the crystal structure of the

 $[Xe_2F_{11}]^+[AuF_6]^-$ salt. Crystal data: $F_{17}AuXe_2$, M = 782.5, orthorhombic, a = 9.115(6), b = 8.542(25), c = 15.726(20) A°, U = 1224 Å³, Z = 4, $D_c = 4.24$ g cm⁻³, space group *Pnma*. Structural analysis employing three dimensional Mo- K_{α} X-ray data from four different crystals has proceeded routinely to a final conventional R factor of 0.035 for 862 independent reflections for which $I \ge 3\sigma(I)$ (R = 0.052 for the 1140 data including zero weight data).

		IADLE			
Anion		Cation			
$\begin{array}{c} F(9)-Au-F(9)'\\F(8)\\F(8)-Au-F(11)\\F(12)\\F(10)-Au-F(11)\\F(12)\\F(12)\end{array}$	$\begin{array}{c} 179 \cdot 1(3)^{\circ} \\ 90 \cdot 4(4) \\ 91 \cdot 6(6) \\ 88 \cdot 0(5) \\ 89 \cdot 2(5) \\ 91 \cdot 2(6) \end{array}$	$\begin{array}{c} F(1)-Xe(1)-F(2)\\F(3)\\F(2)-Xe(1)-F(2)\\F(3)\\F(3)-Xe(1)-F(3)\\Xe(2)-F(7)-Xe(1) \end{array}$	$\begin{array}{c} 79{\cdot}6(4)^{\circ}\\ 79{\cdot}0(4)\\ 86{\cdot}8(3)\\ 87{\cdot}1(4)\\ 91{\cdot}1(3)\\ 169{\cdot}2(2)\end{array}$	$\begin{array}{c} {\rm F(4)-Xe(2)-F(6)}\\ {\rm F(5)}\\ {\rm F(6)-Xe(2)-F(6)}\\ {\rm F(5)}\\ {\rm F(5)-Xe(2)-F(5)} \end{array}$	$79 \cdot 4(4)^{\circ} \\81 \cdot 1(5) \\88 \cdot 6(3) \\87 \cdot 4(6) \\89 \cdot 9(3)$
Interionic distance	es and angles				
$egin{array}{c} { m Xe}(1)-{ m F}(8) & \ { m F}(9) & \ { m Xe}(2)-{ m F}(12) & \ { m F}(9) & \ \end{array}$	$egin{array}{r} 2{\cdot}64(1)\ 3{\cdot}27(1)\ 2{\cdot}64(1)\ 3{\cdot}52(1) \end{array}$	F(1)-Xe(1)-F(7) F(8) F(9)	$\begin{array}{c} 147 {\cdot} 6(6)^{\circ} \\ 136 {\cdot} 3(6) \\ 132 {\cdot} 2(3) \end{array}$	F(4)-Xe(2)-F(7) F(12) F(9)	$\begin{array}{c} 146{\cdot}3(7)^{\circ}\\ 139{\cdot}8(7)\\ 135{\cdot}9(2) \end{array}$

TADTE

As may be seen from the Figure, the anion is essentially octahedral. This is in keeping with the t_{2g}^6 configuration of Auv and is as anticipated from the vibrational spectroscopic¹ and Mössbauer studies.²

FIGURE. The structural unit of $[Xe_2F_{11}]^+[AuF_6]^-$ (estimated standard deviations in parentheses)

The cation consists of two approximately square-based pyramidal XeF_5 groups linked by a common fluorine atom F(7). It is of interest that this bridging F atom subtends approximately the same angle $(ca. 146^{\circ})$ to each of the

¹ K. Leary and N. Bartlett, Chem. Comm., 1972, 903.

axial XeF bonds, as do the F atoms which make close approach to the XeF_5^+ ion in its salts.³⁻⁵ Furthermore, the approach of the angle Xe(1)-F(7)-Xe(2) [169.2(2)°] to linearity, indicates that the canonical form $XeF_5+F-XeF_5+$ is a major one in the resonance-hybrid description of the cation.

Although each XeF₅ group in the complex cation departs significantly from the ideal C_{4v} symmetry of the XeF₅⁺ cation,³ each is still characterized by Faxial-Xe-Fequatorial angles of $ca. 80^{\circ}$. On the other hand, the cis Fequatorial-Xe-F_{equatorial} angles, in the XeF₅ species of $Xe_2F_{11}^+$, are not equivalent. The greatest cis angle, of each XeF₅ equatorial set, is that furthest from the bridging F atom F(7). It may be that the close approach of the bridging F(7) atom (approximately F^- in character) deflects the non-bonding Xevi valence-electron pair from an axial position in each of the pseudo-octahedral XeF5+-like components of $Xe_2F_{11}^+$.

Raman data show that the complex $4 \text{XeF}_{6} \cdot \text{PdF}_{4}$ ⁶ contains essentially the same cation as $[Xe_2F_{11}]^+[AuF_6]^-$ and may, therefore, be formulated as $[Xe_2F_{11}]_2[\mathrm{PdF}_6]^2^-$. The spectra of the $[Xe_2F_{11}]^+$ salts are very like those of the corresponding $[XeF_5]^+$ salts but the $[Xe_2F_{11}]^+$ ion is characterized by a 'bridge stretch' at $ca. 360 \text{ cm}^{-1}$.

This work was supported by the U.S. Atomic Energy Commission.

(Received, 30th October 1972; Com. 1835.)

² G. Kaindl, K. Leary, and N. Bartlett, to be published. (The Au 197 Mössbauer spectra of $Xe_2F_{11}+AuF_6$ - exhibits a sharp single line shifted 2.28 mm per sec. relative to gold metal. The singularity is in accord with the octahedral symmetry of the anion and the shift with the +5 oxidation state.) ⁸ N. Bartlett, K. Leary, D. Templeton, and A. Zalkin, "The Crystal Structure of $(XeF_5^+)_2PdF_6^{2-}$," submitted for publication to

Inorg. Chem. ⁴ N. Bartlett, M. Gennis, D. D. Gibler, B. K. Morrell, and A. Zalkin, "The Crystal Structures of XeF+RuF₆- and XeF₅+RuF₆-," submitted for publication to Inorg. Chem.

⁶ N. Bartlett, B. DeBoer, F. Hollander, F. O. Sladky, D. Templeton, and A. Zalkin, "The Crystal Structures of Xe₂F₃+AsF₆- and XeF₅+AsF₆-," to be published. ⁶ K. Leary and N. Bartlett, to be published.