Ethylene Oligomerisation with Zirconium Arylalkyls and Alkenyls

By C. JAMES ATTRIDGE,* REGINALD JACKSON, SUSAN J. MADDOCK, and DAVID T. THOMPSON (Imperial Chemical Industries Ltd., Corporate Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire)

Summary The addition of alkylchloroaluminium derivatives to ZrR_4 (R = allyl or benzyl) produces active catalysts for the preparation of C_4-C_{20} α -olefins from ethylene.

BESTIAN and CLAUSS¹ used the soluble catalyst, MeTiCl₃·Me-AlCl₂ at low temperatures to oligomerise ethylene to predominantly 2-ethyl- α -olefins. More recently, Langer² has used TiCl₄·Et_nAlCl_{3-n} and obtained high proportions of linear α -olefins. Similar results have been patented³ for $Zr(OR)_4 \cdot R_n AlCl_{3-n}$ catalysts. In contrast, it is known that $Zr(CH_2: CH \cdot CH_2)_4$ and $Zr(PhCH_2)_4^{4,5}$ catalysts in homogeneous solution produce high polymer from ethylene.

We now find that a combination of Zr(PhCH₂)₄ or Zr(CH₂:- $CH \cdot CH_2)_4$ with alkylchloroaluminium gives a catalyst, which forms very little polymer, but produces linear α olefins in the C_4 — C_{20} range with an activity significantly higher than is reported¹⁻³ for the other oligomerisation catalysts. Experiments were performed in toluene solution at 40–80° with ethylene pressures up to 11 kg cm⁻² (see Table). The product from these reactions is essentially pure α -olefin as determined by i.r. and n.m.r. spectroscopy. The proportion of product of chain length $>C_{20}$ is usually

the formation of some low molecular weight oligomers when using freshly prepared solutions of the polymerisation $\hbox{catalyst $\mathrm{Ti}(\mathrm{Ph}\mathrm{CH}_2)_4$, $\mathrm{Al}(\mathrm{Ph}\mathrm{CH}_2$)_3$. }$

Experiments with a number of aluminium alkyl cocatalysts showed that the best activities were obtained for Zr(PhCH₂)₄·Et₃Al₂Cl₃; the order of activity with different aluminium species was $Et_3Al_2Cl_3 > EtAlCl_2 > Me_3Al_2Cl_3$ > Et₂AlCl.

The very large increase in activity (10^2-10^3) for these catalysts relative to that of the simple transition-metal arylalkyl or alkenyl in polymerisation (0.1 g/mmol/kg cm^{-2}/h for benzyl;⁵ 2 g/mmol/kg cm⁻²/h for allyl⁶) provides direct evidence that the role of aluminium alkyls in Ziegler systems is not merely that of a simple alkylating agent. It is probable that the aluminium component enhances activity by increasing the positive charge at zirconium by successive replacement of allyl or benzyl substituents by chlorine[‡] and by the formation of polar binuclear species such as (I) and (II).

Similarly the decrease in molecular weight by a factor of 10³-10⁴ on introducing aluminium alkyls suggests that

TABLE

	Catalysed oligomer	isation of ethyld	nea	
Catalyst (mmol)	Co-catalyst (mmol)	Temp. (°C)	Pressure ^b (kg cm ⁻²)	Activity¢
Zr(PhCH ₂) ₄ (0·25) " (1·0) " " " " Zr(CH ₂ : CH·CH ₂) ₄	$\begin{array}{cccc} {\rm Et_{3}Al_{2}Cl_{3}} & (1\cdot0) \\ & & (4\cdot0) \\ & & \\ & & \\ & & \\ & & \\ {\rm EtAlCl_{2}} & (4\cdot0) \\ {\rm Me_{3}Al_{2}Cl_{3}} & (4\cdot0) \\ {\rm Et_{3}Al_{2}Cl_{3}} & (1\cdot0) \end{array}$	40 80 40 40 40 80 80	11 11 6 2 6 11 11	62 61 37 51 28 19 28
» (1·0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40	11	18

^a All reactions were carried out in toluene (500 ml) in a steel autoclave (1 l). ^b An approximately constant pressure was maintained, by periodically opening a valve to a high pressure ethylene source. ^c Expressed as g product/mmol catalyst/kg cm⁻² of C_2H_4 .

not more than 5%; the first experiment in the Table gave 2 g insoluble polymer and 83 g of distilled $\rm C_4--C_{20}$ oligomers in a reaction time of 30 min. In a typical case, g.l.c. analysis gave well separated peaks, corresponding to oligomers in the sequence C_4 (11.8)[†] C_6 (14.8), C_8 (16), C_{10} $(14\cdot3), C_{12} (9\cdot8), C_{14} (9\cdot2), C_{16} (7\cdot0), C_{18} (5\cdot8), C_{20} (4\cdot1), C_{22} (2\cdot3),$ $>C_{22}$ (4.6). The formation of such high proportions of oligomers was unexpected, although Giannini et al.⁵ had noticed increasing the positive charge at zirconium has an even greater effect on the rate of termination, increasing it by a factor of $ca. 10^{5}$ —10⁶. It is possible that such a dramatic change could be caused by transfer of the growing chain onto the aluminium (II where R =growing chain).

We thank Mr. T. Madigan for experimental assistance.

(Received 22nd December 1972; Com. 2129.)

† Figures in parentheses give the wt. % of each component.

- \ddagger *I.e.* the reverse of the conventional alkylation in a Ziegler catalyst.
- ¹ H. Bestian, K. Clauss, H. Jensen, and E. Prinz, Angew. Chem., 1963, 2, 32.
- ² A. W. Langer, J. Macromol. Sci. Chem. A4, 1970, 775.
- ³ Montecatini Edison S.p.A., Netherlands Patent Specn., 70, 13193/1971.

- ⁴ U. Zucchini, E. Albizzati, and U. Giannini, J. Organometallic Chem., 1971, 26, 357.
 ⁵ U. Giannini, U. Zucchini, and E. Albizzati, Polymer Letters, 1970, 8, 405.
 ⁶ D. G. H. Ballard, E. Jones, T. Medinger, and A. J. P. Pioli, Makromol. Chem., 1971, 148, 175.