Preparation of $\mathbf{1 , 3 , 2}$-Benzodithiaphospholes and the X-Ray Crystal Structure of 2-Methyl-2,2'-spirobi-(1,3,2-benzodithiaphosphole)

By Michael Eisenhut, Reinhard Schmutzler, and William S. Sheldrick*
(Lehrstuhl B für Anorganische Chemie, Technische Universität Braunschweig Pockelsstrasse 4, West Germany)

Summary A series of monocyclic and spiro 1,3,2-benzodithiaphospholes $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right) \mathrm{PR}_{n} \mathrm{~F}_{3-n}(n=2, \mathrm{R}=\mathrm{Ph}, \mathrm{Me})$, ($n=3, \mathrm{R}=\mathrm{Pr}^{\mathrm{i}}$) and $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PR}(\mathrm{R}=\mathrm{Ph}, \mathrm{Me})$ have been synthesised and the structure of one of these, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PMe}$, has been determined by X-ray diffraction.

We recently reported the preparation and stereochemical characteristics of fluorophosphosphoranes which contain a catechol ring system attached to five-co-ordinate phosphorus, ${ }^{1}$ where the fluorine is apparently equatorial in the presumably trigonal-bipyramidal monofluorophosphorane $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PF} .{ }^{2}$ Catechol phosphoranes and the corresponding disulphur derivatives would be expected to have differing stereochemical arrangements owing to differ-

(I)

$$
(n=2, \mathrm{R}=\mathrm{Ph}, \mathrm{Me}),\left(n=3, \mathrm{R}=\mathrm{Pr}^{\mathrm{i}}\right) \quad+2 \mathrm{Me}_{3} \mathrm{SiF}
$$

ences in size and electronegativity between sulphur and oxygen. Accordingly, a series of dithiocatechol derivatives (II) was synthesised as in reaction (1). With RPF_{5} ($\mathrm{R}=\mathrm{Ph}, \mathrm{Me}$) spiro-derivatives of the type $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PR}$ were obtained. The reaction between (I) and PF_{5} was different from that with $o-\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, in that an ionic compound (III), rather than the monofluorophosphorane, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PF}$, was obtained [reaction (2)]. In view of these
structural aspects we have carried out a crystal structure determination of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{Me}$.

The crystals are orthorhombic Pna2 2_{1} with $a=17.772(3)$, $b=6 \cdot 150(1), \quad c=13 \cdot 158(2) \AA, \quad Z=4$. Intensities were estimated visually from equi-inclination Weissenberg photographs ($h 01-h 6 l$ inclusive). The structure was determined by three-dimensional Patterson and Fourier techniques and refined by full-matrix least-squares with

anisotropic temperature factors for the phosphorus and sulphur atoms. The R value is 0.075 for 613 unique observed reflections. Attempts to refine the hydrogen positions have been unsatisfactory.

Figure. The $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PMe}$ molecule showing bond lengths in \AA. The e.s.d.'s are P-S 0.009, S-C 0.02, and other bonds $0.03 \AA$.

The principal features of the molecule are displayed in the Figure. In contrast to previous structural determinations of molecules containing pentaco-ordinate phosphorus, ${ }^{3}$ the co-ordination at phosphorus in $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PMe}$ shows a very considerable distortion from idealised trigonalbipyramidal geometry and may be regarded as intermediate between this and square-pyramidal. For instance, the angle between the equatorial sulphur atoms is $132 \cdot 0(8)^{\circ}$ and that between the axial sulphur atoms $158 \cdot 1(4)^{\circ}$. However, the existence of residual trigonal-bipyramidal character is shown by the fact that the mean P-S(equatorial) bond length of $2 \cdot 14 \AA$ is $0.06 \AA$ shorter than the mean P-S(axial) bond length of $2 \cdot 20 \AA$, in agreement with the
effect normally associated with this type of co-ordination. The extent of the distortion from idealised square-pyramidal geometry may be gauged from a comparison of the mean $\mathrm{C}(13)-\mathrm{P}-\mathrm{S}\left(\right.$ equatorial) angle of $108 \cdot 3(8)^{\circ}$ with the mean $\mathrm{C}(13)-\mathrm{P}-\mathrm{S}\left(\right.$ axial) angle of $101 \cdot 0(8)^{\circ}$. The five-membered PSCCS rings are puckered, with a mean angle of $100 \cdot 4(8)^{\circ}$ at sulphur, which is similar to previously observed values. ${ }^{4,5}$

Support through the Alexander von Humboldt-Stiftung (W.S.S.), the Deutsche Forschungsgemeinschaft (M.E.), and the Verband der Chemischen Industrie is gratefully acknowledged.
(Received, 28th November 1972; Com. 1990.)
${ }^{1}$ G. O. Doak and R. Schmutzler, Chem. Comm., 1970, 476.
${ }^{2}$ G. O. Doak and R. Schmutzler, J. Chem. Soc. (A), 1971, 1295.
${ }^{3}$ R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Amer. Chem. Soc., 1972, 94, 3047.
${ }^{4}$ J. D. Lee and G. W. Goodacre, Acta Cryst., 1971, B29, 1055.
${ }^{5}$ J. D. Lee and G. W. Goodacre, Acta Cryst., 1971, B27, 1841.

