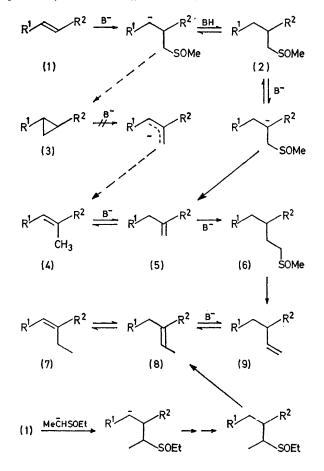

Simulation of Biological C-Ethylation using Sulphoxide Anions as Intermediates

By BRIAN G. JAMES and GERALD PATTENDEN*†

(Department of Chemistry, University College, Cathays Park, Cardiff CF1 3NR)

Summary Biological C-ethylation of C-C double bonds can be simulated in vitro by a double methylation sequence employing dimethyl sulphoxide anion as methyltransfer reagent.


TRANSFER of the methyl group of L-methionine to unsaturated carbon centres leading to C-methyl and C-ethyl substituted double bonds has been demonstrated in a number of biological systems.¹ It has been postulated that these processes occur by nucleophilic attack on Sadenosylmethionine leading to carbonium ion intermediates which then rearrange as in Scheme 1. Direct C-ethylation from ethionine is not thought to be possible. We report here studies of the alkylation of C-C double bonds by sulphoxide anions which illustrate that biological C-ethylation can be simulated in vitro using dimethyl sulphoxide anion (DMSO⁻) as methyl-transfer reagent.

Methylation of (1b) by DMSO⁻ has been shown to lead selectively to either (4b) or (4c)² Sulphoxides (2) are intermediates in these reactions since authentic (2b) and

SCHEME 2 \mathbf{a} ; $\mathbf{R}^{1} = \mathbf{R}^{2} = \mathbf{P}\mathbf{h}$

145

b; $\mathbb{R}^1 = \mathbb{P}h$, $\mathbb{R}^2 = o - MeC_6H_4$ **c**; $\mathbb{R}^1 = o - MeC_6H_4$, $\mathbb{R} = \mathbb{P}h$

† Present address : Chemistry Department, Nottingham University, University Park, Nottingham NG7 2RD.

(2c) each produced (4b) and (4c) respectively by brief treatment with DMSO-. The cyclopropane (3) however, is not implicated in the reaction schemes, since (3a) remained unchanged in DMSO⁻ solution. When sulphoxide (2c), m.p. 119–120°; ν_{max} 1039 cm⁻¹; τ 2.78–3.1 (9H), 6.8-7.2 (5H), 7.63 (SOMe), and 7.8 (: CMe), was treated with DMSO⁻ for long periods, a different sulphoxide was produced (ca. 70%) [ν_{max} 1040 cm⁻¹; τ 2·8—3·1 (9H), 7·1 (3H), 7.5-8.0 (4H), 7.7 (SOMe), and 7.82 (:CMe)] consistent with the homologue (6c). The same sulphoxide was also produced (ca. 75%) when both (4c) and (5c) were treated with DMSO⁻ and is therefore probably formed from (2c) as outfined in Scheme 2. Thermal elimination of sulphinic acid from (6c) produced the butene (9c) (ca. 60%), v_{max} 990 and 910 cm⁻¹, τ 2.7–3.1 (9H), 3.98 (ddd, J 9, 10, and 17 Hz, CH·CH:CH₂), 5.02 (1H), 5.10 (1H), 6.48 (dt, J ca. 9 Hz), 7.2 (2H), and 7.8 (Me Ar), which was smoothly isomerised in DMSO⁻ to a Z-E mixture of hydrocarbons (7c) and (8c). In another series, both (1a) and (4a) similarly produced a Z-E mixture of (7a) and (8a) following treatment with DMSO- (to 6a), thermal elimination of sulphinic acid (to 9a), and isomerisation.

These studies thus demonstrated that transformation of (1) into (7) and (8) can be achieved by a double methylation

⁸ W. E. Spittstoesser and M. Mazelis, Phytochemistry, 1967, 6, 39.

sequence (see Scheme 2) employing DMSO⁻ as methyltransfer reagent, and in this respect provide an interesting laboratory mimic of *in vivo* C-ethylation via methionine. Although methionine S-oxide has been found in higher plants where transfer of the methyl group of methionine has been demonstrated,³ the anion from methionine Soxide (or ylides formed from methionine sulphonium salts) is not considered to take part in *in vivo* C-alkylation processes.

As a corollary to these studies, *direct C*-ethylation of (1) to (7) and (8) *via* sulphoxide anion intermediates was demonstrated by reaction of (1a) with the anion from diethyl sulphoxide; this produced (*ca.* 45%) a similar proportion of *Z*-*E*-isomers of (7a) and (8a) to that obtained from isomerisation of (9a).

The Z- and E-isomers of (7a,c) and (8a,c) were separated by g.l.c. and unambiguously characterised by spectral comparison with authentic materials obtained by independent routes.

B.G.J. thanks The British Petroleum Company Ltd., for a research studentship.

(Received, 12th December 1972; Com. 2081.)

¹ For review see E. Lederer, Quart. Rev., 1969, 23, 453.

² B. G. James and G. Pattenden, Chem. Comm., 1971, 1015.