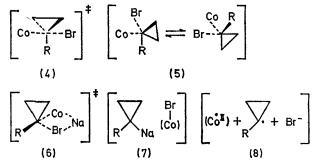

Preparation of 1-Methyl-2,2-diphenylcyclopropylcobaloxime and Theoretical Considerations for Its Mode of Formation

By FREDERICK R. JENSEN* and DAVID H. BUCHANAN


(Department of Chemistry, University of California, Berkeley, California 94720)

Summary The title compound, which contains a stable tertiary alkylcobalt σ -bond, is readily obtained from the reaction of pyridine[bis(dimethylglyoximato)]cobalt(I) and 1-methyl-2,2-diphenylcyclopropyl bromide; five mechanisms for the reactions of low-valent metal ions and alkyl halides are discussed.

REACTION of cobaloxime($1^{1,2}$ (1) with (2)³ gives 1-methyl-2,2-diphenylcyclopropylcobaloxime (3) (60%) [equation

From optically active (3),³ reaction (1) followed by acid cleavage, leads to (\pm) -1-phenyl-2,2-dimethylcyclopropane. However, it was not possible to decide at which point the

(1)].[†] Cleavage of (3) by sodium in liquid ammonia, or gaseous HBr in methylene chloride gives 1-methyl-2,2-diphenylcyclopropane in yields of 65 and 52% respectively.

activity was lost. Solutions of (3) are too highly coloured^{2,4} to allow meaningful measurement of rotations.[‡] The bromo-demetallation of $(3)^4$ was unsuccessful owing to com-

† The elemental analysis and the n.m.r. spectrum were consistent with structure (3).

‡ Similarly, it was not possible to measure a rotation for optically active s-butylcobaloxime.

peting destruction of the bis-dimethylglyoxime ligand by bromine.

Compound (3) is of interest for its unusual structural features, *i.e.*, it contains both a tertiary and a cyclopropyl centre σ -bonded to a transition metal. Derivatives of (2) with main-group elements are common⁵ and a few tertiary alkyl derivatives of transition metals have been reported.⁶ It is interesting and perhaps significant that the only other σ -bonded cyclopropyl-transition metal compounds known⁷ are derivatives of h^{5} -(C₅H₅)Fe(CO)₂ which like (1) forms a low-valent nucleophilic ion.

Reaction (1) is of considerable theoretical interest and at least five mechanisms must be considered: (i) $S_{\rm N}2$ with inversion at carbon, transition state (4).² This mechanism has never been demonstrated at a tertiary centre. (ii) $S_N 2$ with retention at carbon, intermediates (5).8 Transition state (4) is of such high energy that $S_N 2$ reactions probably proceed through intermediates (5) which are interconverted by turnstile or Berry pseudo-rotations. Depending upon the number of interconversions, the stereochemistry may be either retention or inversion. (iii) Metal-halide exchange, transition state (6). This is analogous to a proposed mechanism for the reaction of (2) with lithium

triphenyltin which proceeds with retention of configuration.⁹ (iv) Transmetallation, intermediate (7). This mechanism requires that the intermediates collapse in the cage to form product faster than the sodium derivative reacts with methanol (solvent). (v) Electron transfer to give free-radicals, intermediates (8).

At present no definitive choice can be made among the proposed mechanisms, however any mechanism must be consistent with the following observations: Optically active bromide (2), recovered from reaction mixtures [equation (1)] in up to 20% yield, retained all of its initial activity. In addition, (2) stirred with cobaloxime(II), a d^7 radical-like species, anaerobically for several hours at room temperature was recovered in 96% yield with no loss in optical activity. Mixtures of (1) with 1-bromoadamantane or 1-bromonorbornane under standard conditions³ gave no alkyl-cobalt compounds, and upon work-up, gave unchanged alkyl bromides in high vield.

We thank Mr. Steve Dinizo for technical assistance and the National Institutes of Health for support and a postdoctoral fellowship to D.H.B.

(Received, 25th September 1972; Com. 1647.)

¹ G. N. Schrauzer and E. Deutsch, J. Amer. Chem. Soc., 1969, 91, 3341.
 ² F. R. Jensen, V. Madan, and D. H. Buchanan, J. Amer. Chem. Soc., 1970, 92, 1414.
 ³ H. M. Walborsky and F. J. Impastato, J. Amer. Chem. Soc., 1959, 81, 5835.

⁴ F. R. Jensen, V. Madan, and D. H. Buchanan, J. Amer. Chem. Soc., 1971, 93, 5283.
⁵ J. L. Webb, C. K. Mann, and H. M. Walborsky, J. Amer. Chem. Soc., 1970, 92, 2042, and references therein.
⁶ D. F. Gili and B. L. Shaw, J.C.S. Chem. Comm., 1972, 65; B. K. Bowers and H. G. Tennant, J. Amer. Chem. Soc., 1972, 94, 2512; and references therein.

⁷ A. Cutler, R. W. Fish, W. P. Giering, and M. Rosenblum, J. Amer. Chem. Soc., 1972, 94, 4354. ⁸ P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis, and I. Ugi, J. Amer. Chem. Soc., 1971, 10, 687.

⁹ K. Sisido, S. Kozima, and K. Takizawa, Tetrahedron Letters, 1967, 33.