Hydrazine-producing Intermediate in the Nitrogen Fixing System: $cp_2TiCl_2 + Pr^iMgCl + N_2$

By Yu. G. Borodko, I. N. Ivleva, L. M. Kachapina, E. F. Kvashina, A. K. Shilova, and A. E. Shilov* (Institute of Chemical Physics of the Academy of Sciences of the U.S.S.R., Chernogolovka, Moskovskaya Oblast, U.S.S.R.)

Summary An intermediate paramagnetic complex (cp₂-Ti)₂N₂MgCl has been isolated at $-60\,^{\circ}\text{C}$ in the system: cp₂TiCl₂ + PrⁱMgCl + N₂ in ether (cp = $\pi\text{-C}_5\text{H}_5$); the complex forms N₂H₄ when decomposed by HCl.

An unstable complex $(cp_2TiR)_2N_2$ which readily loses N_2 has been observed^{1,2} in the system: cp_2TiCl_2 (or $cp_2TiCl)$ + $Pr^1MgCl + N_2$. Another comparatively stable complex $(cp_2Ti)_2N_2$ has been isolated in the system cp_2TiCl +

cp₂Ti-N-N=cp₂Ti cp₂Ti
$$\leftarrow$$
N=N-Ticp₂
MgCl MgCl

 $\rm MeMgI+N_2.^3$ This forms $\rm N_2H_2$ as an intermediate when decomposed by HCl. The complexes $\rm (cp_2Ti)_2N_2$ and $\rm (cp_2Ti)_2N_2$ can be regarded as two successive intermediates n the reduction of dinitrogen to a nitride.

A solution of $Pr^{1}MgCl$ in ether was added to solid cp_{2} - $TiCl_{2}$ at $-60\,^{\circ}C$ under argon (Mg:Ti=4). When the solution was filtered and the argon replaced by N_{2} a dark precipitate was formed. The product is stable *in vacuo* at room temperature but is rapidly oxidised by air.

cp = cyclopentadienyl

The analysis of the complex corresponds to a formula $(cp_2Ti)_2N_2MgCl$, the complex is paramagnetic, the temperature dependence of magnetic susceptibility obeys the Curie law, the magnetic moment corresponds to one unpaired electron per two titanium atoms ($\mu_{\rm eff}=1.1$ BM per one atom Ti. The e.s.r. spectrum of the solid is a single line with g=1.975 and $\nu_{\rm NN}=1255$ cm⁻¹ (shifted to 1215 cm⁻¹ when $^{14}N_2$ is substituted by $^{15}N_2$). These results are in agreement with structures (I) or (II). Treatment of the complex with methanolic HCl at -60 °C results in the formation of hydrazine (ca. 80%) probably from reaction (1). The remainder of the complexed nitrogen produces free N_2 possibly via N_2H_2 .

$$(cp_2Ti)_2N_2MgCl \xrightarrow{HCl} (cp_2TiCl)NHNHTicp_2 \qquad (1)$$

$$\downarrow HCl$$

$$N_2H_4$$

Reaction of $(cp_2Ti)_2N_2MgCl$ with excess of Pr^iMgCl leads to a nitride which forms NH_3 when decomposed by HCl. The reactions shown in the Scheme account for these results. Reaction of $(cp_2Ti)_2N_2MgCl$ with LiPh instead of Pr^iMgCl and subsequent treatment by HCl produces some aniline $(ca.\ 1\%)$ together with ammonia. This result shows a possible mechanism for aniline formation in the system $cp_2TiCl_2 + LiPh + N_2.^4$

(Received, 15th December 1972; Com. 2090.)

¹ A. E. Shilov, A. K. Shilova, and E. F. Kvashina, Kinetica i Kataliz, 1969, 10, 1402.

A. E. Shilov, A. K. Shilova, E. F. Kvashina, and T. A. Vorontsova, Chem. Comm., 1971, 1590.
 Yu. G. Borodko, I. N. Ivleva, L. M. Kachapina, S. I. Salienko, A. K. Shilova, and A. E. Shilov, J.C.S. Chem. Comm., 1972, 1178.

⁴ M. E. Volpin, V. B. Shur, R. V. Kudrjavtsev, and L. A. Prodayko, Chem. Comm., 1968, 1038.