\boldsymbol{X}-Ray Molecular Structure of Bis-(L-ornithinato)palladium(iI). Conformation of the Seven-membered Chelate Ring

By Yasuii Nakayama, Keiji Matsumoto, Shun’ichiro Ooi, and Hisao Kuroya*
(Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan)

Summary X-Ray crystal structure analysis shows that bis-(L-ornithinato)palladium(II) contains two 7-membered chelate rings in the twist-chair conformation.

Although the ornithinate ion, $\mathrm{H}_{2} \mathrm{~N} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}_{2}^{-}$, contains three donor atoms, it acts as a bidentate ligand on chelation to palladium(ir). ${ }^{1}$ The chelate ring could be formed either via N and O yielding a 5 -membered ring or via co-ordination of two N atoms to Pd forming a 7 -membered ring. From c.d. results Wilson and Martin have concluded that equal amounts of the 5 - and 7 -membered rings are formed in aqueous solution (pH 9) of the $1: 2$ complex of palladium(II) with l-ornithine. ${ }^{1}$ Since an aliphatic 7 -membered chelate ring is not so familiar as 5 - or 6 -membered ones in co-ordination chemistry, we undertook a single-crystal structure analysis of bis-(Lornithinato)palladium(II).

Crystals were obtained by slow evaporation of the reaction mixture prepared by Martin's method. ${ }^{1}$ Elemental analyses were in good agreement with the formula $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}$. Crystal data: orthorhombic, $a=10 \cdot 680-$ (7), $b=14 \cdot 207(4), c=9 \cdot 051(6) \AA, Z=4$, space group $P 2_{1} 2_{1} 2_{1}$. Intensities of 1686 independent reflections were estimated visually from multiple-film equi-inclination Weissenberg photographs taken around a and b with $\mathrm{Cu}-K_{\alpha}$ radiation. The structure was solved by Patterson and Fourier techniques and refined by least-squares to $R 0 \cdot 11$, isotropic temperature factors being used for all but Pd.

The molecular structure is shown in the Figure. Two 7 -membered chelate rings are formed, palladium being co-ordinated by four N atoms in a square-planar arrangement. The molecule has an approximate two-fold axis passing through Pd and perpendicular to the plane defined by Pd and the four N atoms. The two H atoms occupy an axial position, being separated by $2 \cdot 17 \AA\{\mathrm{Pd} \cdots \mathrm{H}[\mathrm{C}(3)]$,
$2.79 \AA$; $\left.\mathrm{Pd} \cdot \cdots \mathrm{H}\left[\mathrm{C}\left(3^{\prime}\right)\right], 2 \cdot 66 \AA\right\} \cdot \dagger$ Moreover, one hydrogen bound to $\mathrm{C}(4)$ of the adjacent molecule occupies a transaxial position $\{\mathrm{Pd} \cdots \mathrm{H}[\mathrm{C}(4)], 2 \cdot 47 \AA\}$. Thus the complex is quasi-7-co-ordinate.

FIGURE. Molecular structure of bis-(L-ornithinato)palladium(II). The dotted circle indicates the \mathbf{H} atom linked to $\mathrm{C}(4)$ of the adjacent molecule. E.s.d.s of bond lengths and angles are $0.02 \AA$ and 0.7°, respectively.

Both the chelate rings assume a twist-chair conformation with the carboxylate group in a quasi-equatorial position. The average value (113°) of the $\mathrm{Pd}-\mathrm{N}-\mathrm{C}$ bond angles indicates that this angle is less strained than that (ca. 120°) in the 6 -membered ring formed by chelation of trimethylenediamine, ${ }^{2}$ although it is generally considered that a 6 membered chelate ring is more stable than a 7 -membered one. However, there is considerable torsional strain in the present 7 -membered ring. The dihedral angle between the two terminal bonds about the central $\mathrm{C}-\mathrm{C}$ bond in the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ fragment agrees well, within experi-

[^0]
mental error with that in the $\mathrm{C}\left(\mathbf{1}^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ fragment (mean 102°).

These fragments in the chelate rings assume a nearly eclipsed conformation, and this strain would lead to Baeyer ring strain. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}-\mathrm{C}$ bond angles range from 111 to 118°, but these values are not accurate enough to discuss the Baeyer strain in detail (e.s.d. of bond angles involving lighter atoms is 2°).
${ }^{1}$ E. W. Wilson, jun., and R. B. Martin, Inorg. Chem., 1970, 9, 528.
${ }^{2}$ R. J. Geue and M. R. Snow, J. Chem. Soc. (A), 1971, 2981 ; J. R. Gollogly and C. J. Hawkins, Inorg. Chem., $1972,11,156$.

[^0]: \dagger The hydrogen co-ordinates were calculated on the assumption that the $\mathrm{C}-\mathrm{H}$ bond length is $1.08 \AA$.

