Stereoselective Total Synthesis of Prostaglandin E $\boldsymbol{1}_{1}$

By Masateru Miyano* and Michael A. Stealey
(Searle Laboratories, G. D. Searle \& Co., P.O. Box 5110, Chicago, Illinois 60680)

[^0]Crude (2a), prepared from (1) as described earlier, ${ }^{2}$ was converted into the tetrahydropyranyl ether (2b) and reduced $\left(\mathrm{Cr}^{2+}\right)$ in aqueous THF at 20° to give (3). Without purification, oily (3) was condensed with n-hexanoylmethylene(triphenyl)phosphorane in refluxing benzene to give a mixture containing (4), which was readily separated by chromatography. \dagger The ratio (4) (natural configuration): 8-epi-(4):8,12-bisepi-(4) was 70-80:ca. 10:ca. 20. The structure of (4) thus obtained [21-26\% overall yield \ddagger

[^1]\ddagger Not yet optimized.

(1)
i

(3)
$a ; R=H$
b; $R=T H P$

(4) $[21-26 \%$ from (1)]

(5)

THP tetrahydropyranyl
Reagents: i, a, $\mathrm{NaIO}_{4}-\mathrm{OsO}_{4} ;{ }^{2}$ b, dihydropyran- H^{+}; ii, $2 \mathrm{H}\left(\mathrm{Cr}^{2+}\right)$; iii, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COC}=\mathrm{PPh}_{3}$; iv, a, thexyl tetrahydrolimonyl lithium borohydride; $\mathrm{b}, \mathrm{H}_{3} \mathrm{O}^{+}$.
from (1)] was confirmed by comparison of its i.r., u.v., and n.m.r. spectra with those of the tetrahydropyranyl ether prepared from (\pm)-15-dehydro- $\mathrm{PGE}_{1} .{ }^{2}$ Reduction of (4) with thexyl tetrahydrolimonyl lithium borohydride ${ }^{4}$ in THF at -78° took place regioselectively as well as stereoselectively to yield ($45-55 \%$ after chromatography) the tetrahydropyranyl ethers of PGE_{1} and its 15 -epimer in the ratio ca. 4:1. Hydrolysis of the former afforded (\pm)- PGE_{1} (5), m.p. 112-113 ${ }^{\circ}$, whose n.m.r. spectrum (100 MHz in $\mathrm{CD}_{3} \mathrm{OD}$) was indistinguishable from that of natural PGE_{1}. While small amounts of the starting material and overreduced product (mostly $\mathrm{PGF}_{1 \alpha}$) were obtained, no 9-hydroxy-15-oxo-compound was formed§ on reduction of (4) with thexyl tetrahydrolimonyl lithium borohydride.

The key intermediate (1) was resolved via the (R)-(-)-α-methoxyphenylacetic esters, and the ($3 R$) isomer ($[\alpha]_{D}^{25}$ $-16 \cdot 0,1 \%$ in MeOH) was converted as described above into (-)- PGE_{1} (5), which was indistinguishable from natural PGE_{1} in several biological assays and physical properties (100 MHz n.m.r. spectrum in $\mathrm{CD}_{3} \mathrm{OD}$; m.p. $114-114 \cdot 5^{\circ}$; recrystallized from EtOAc; $[\alpha]_{\mathrm{D}}^{24}-53 \cdot 2$, 1% in THF).
§Rigorously confirmed by comparison of hydrolysis products of crude reduction product with authentic 9α - and 9β-hydroxy-11 $\alpha-$ hydroxy-15-oxoprost-13-enoic acids obtained by sodium borohydride reduction of (4) followed by hydrolysis.
© Carried out by Mr. C. R. Dorn.
${ }^{1}$ H. Nugteren, H. Vonkeman, and D. A. van Dorp, Rec. Tvav. chim., 1967, 86, 1; E. J. Corey et al., J. Amer. Chem. Soc., 1968, 90, 3245 ; 1968, 90, 3247 ; 1969, 91, 535; 1970, 92, 2586; 1971, 93, 7319; W. P. Schneider, U. Axen, F. H. Lincoln, J. E. Pike, and J. L. Thompson, ibid., 1968, 90, 5895 ; C. J. Sih, P. Price, R. Sood, R. G. Salomon, G. Peruzzotti, and M. Casey, ibid., 1972, 94, 3643; J. Fried, C. H. Lin, J. C. Sih, P. Dalven, and G. F. Cooper, ibid., 1972, 94, 4342, 4345; H. L. Slates, Z. S. Zelawski, D. Taub, and N. L. Wendler, J.C.S. Chem. Comm., 1972, 304; M. Miyano, R. A. Mueller, and C. R. Dorn, Intra-science Chem. Rep., 1972, Vol. 6, No. 1, 43.
${ }^{2}$ M. Miyano, C. R. Dorn, and R. A. Mueller, J. Org. Chem., 1972, 37, 1810.
${ }^{3}$ M. Miyano and C. R. Dorn, J. Org. Chem., 1972, 37, 1818.
${ }^{4}$ E. J. Corey, S. M. Albonico, U. Koelliker, T. K. Schaaf, and R. K. Varma, J. Amer. Chem. Soc., 1971, 93, 1491.

[^0]: Summary A nine-step stereoselective total synthesis of (\pm)-PGE ${ }_{1}$ (5) from benzylideneacetone and dimethyl 3 -oxoundecan-1,11-dioate is described.

 Several elegant total syntheses of prostaglandin E_{1} $\left[\mathrm{PGE}_{1}\right.$ (5)] have been published. ${ }^{1}$ By expanding our seven-step nonstereoselective synthesis of (土)-PGF $1{ }^{2}$ and (\pm)-dihydro- $\mathrm{PGE}_{1},{ }^{3}$ we have achieved a practical, stereochemically controlled synthesis of PGE_{1}.

[^1]: \dagger SilicAR CC-4 and 15% EtoAc-benzene. No chromatography was employed in earlier stages.

